CMPS 101
Homework Assignment 8

1. B.5-4 page 1180
 Use induction to show that a nonempty binary tree with n nodes and height h satisfies $h \geq \lfloor \lg n \rfloor$.
 Hint: use the following recursive definition of height discussed in class:

 $$h(T) = \begin{cases}
 -\infty & n(T) = 0 \\
 0 & n(T) = 1 \\
 1 + \max(h(L), h(R)) & n(T) > 1
 \end{cases}$$

 Here $n(T)$ denotes the number of nodes in a binary tree T, $h(T)$ denotes its height, L denotes its left subtree, and R its right subtree. Note that this proof can be phrased equally well as an induction on $n(T)$ or on $h(T)$.
 Additional hint: use (and prove) the following fact: $\lfloor \lg(2k + 1) \rfloor = \lfloor \lg(2k) \rfloor$ for any positive integer k.

2. 6.5-3 page 165
 Write pseudocode for the procedures HeapMinimum, HeapExtractMin, HeapDecreaseKey, and HeapInsert that implement a min-priority queue with a min-heap.

3. Let $G = (V, E)$ be a weighted directed graph and let $x \in V$. Suppose that after Initialize(G, s) is executed, some sequence of calls to Relax() causes $d[x]$ to be set to a finite value. Prove that G contains an s-x path of weight $d[x]$. (Hint: use induction on the number of calls to Relax().

4. 24.1-3 p. 654
 Given a weighted directed graph $G = (V, E)$ with no negative-weight cycles, let m be the maximum over all vertices $x \in V$ of the minimum number of edges in a shortest path from the source $s \in V$ to x. (Here, the shortest path is by weight, not by the number of edges.) Suggest a simple change to the Bellman-Ford algorithm that allows it to terminate in $m + 1$ passes, even if m is not known in advance.

5. 24.3-1 p. 662
 Run Dijkstra’s algorithm on the directed graph of Figure 24.2 p. 648 (pictured below), first using vertex s as the source and then using vertex z as the source. Show the d and π values and the vertices in set S after each iteration of the while loop.

```
\begin{itemize}
\item \textbf{1. B.5-4 page 1180}
Use induction to show that a nonempty binary tree with $n$ nodes and height $h$ satisfies $h \geq \lfloor \lg n \rfloor$.
\textbf{Hint:} use the following recursive definition of height discussed in class:
\begin{equation}
    h(T) = \begin{cases} 
    -\infty & n(T) = 0 \\
    0 & n(T) = 1 \\
    1 + \max(h(L), h(R)) & n(T) > 1 
\end{cases}
\end{equation}
Here $n(T)$ denotes the number of nodes in a binary tree $T$, $h(T)$ denotes its height, $L$ denotes its left subtree, and $R$ its right subtree. Note that this proof can be phrased equally well as an induction on $n(T)$ or on $h(T)$.
\textbf{Additional hint:} use (and prove) the following fact: $\lfloor \lg(2k + 1) \rfloor = \lfloor \lg(2k) \rfloor$ for any positive integer $k$.

\item \textbf{2. 6.5-3 page 165}
Write pseudocode for the procedures HeapMinimum, HeapExtractMin, HeapDecreaseKey, and HeapInsert that implement a min-priority queue with a min-heap.

\item \textbf{3. Let $G = (V, E)$ be a weighted directed graph and let $x \in V$. Suppose that after Initialize($G, s$) is executed, some sequence of calls to Relax( ) causes $d[x]$ to be set to a finite value. Prove that $G$ contains an $s$-$x$ path of weight $d[x]$. (Hint: use induction on the number of calls to Relax( ).

\item \textbf{4. 24.1-3 p. 654}
Given a weighted directed graph $G = (V, E)$ with no negative-weight cycles, let $m$ be the maximum over all vertices $x \in V$ of the minimum number of edges in a shortest path from the source $s \in V$ to $x$. (Here, the shortest path is by weight, not by the number of edges.) Suggest a simple change to the Bellman-Ford algorithm that allows it to terminate in $m + 1$ passes, even if $m$ is not known in advance.

\item \textbf{5. 24.3-1 p. 662}
Run Dijkstra’s algorithm on the directed graph of Figure 24.2 p. 648 (pictured below), first using vertex $s$ as the source and then using vertex $z$ as the source. Show the $d$ and $\pi$ values and the vertices in set $S$ after each iteration of the while loop.
\end{itemize}
```
6. 24.3-6 p. 663

We are given a directed graph $G = (V, E)$ on which each edge $(u, v) \in E$ has an associated value $r(u, v)$, which is a real number in the range $0 \leq r(u, v) \leq 1$ that represents the reliability of a communication channel from vertex u to vertex v. We interpret $r(u, v)$ as the probability that the channel from u to v will not fail, and we assume that these probabilities are independent. Give an efficient algorithm to find the most reliable path between two given vertices.