1. Let T be a tree with n vertices and m edges. Prove that $m = n - 1$ by induction on m.

2. Let G be an acyclic graph with n vertices, m edges and k connected components. Use the result of the preceding problem to prove that $m = n - k$. (Hint: apply the preceding result to each of the k trees composing G.)

3. Use the iteration method to find an exact solution to the recurrence:

$$T(n) = \begin{cases}
1 & 1 \leq n < 3 \\
2T(\lfloor n/3 \rfloor) + 5 & n \geq 3
\end{cases}$$

4. Use the iteration method on the following recurrence

$$T(n) = \begin{cases}
3 & 1 \leq n < 5 \\
4T(\lfloor n/5 \rfloor) + n & n \geq 5
\end{cases}$$

to show that

$$T(n) = \sum_{i=0}^{\lfloor \log_5(n) \rfloor - 1} 4^i \lfloor \frac{n}{5^i} \rfloor + 3 \cdot 4^{\lfloor \log_5(n) \rfloor}$$

and hence $T(n) = \Theta(n)$.