To find the SCC's of a digraph G do:

- call $DFS(G)$, as vertices finish, push them onto a stack.
- compute the transpose G^T of G. (reverse all directed edges.)
- call $DFS(G^T)$, processing vertices in main loop at DFS by decreasing times from first call, i.e. pop vertices off the stack.
Thus (22.16 P. 556)
when this process is completed
the trees in the DFS forest
from 2 nd call to DFS span the
SCCs of G.
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>7</td>
</tr>
</tbody>
</table>
Strong components of G (and G^T) are

$C_1 = \{1, 5, 2\}$

$C_2 = \{3, 4\}$

$C_3 = \{7, 6\}$

$C_4 = \{8\}$
\[\text{Defn} \]

The component graph (also condensation graph) \(G^\text{sc} \) of \(G \) has \(V(G^\text{sc}) = \{ \text{the strong components of } G \} \), and there exists an edge from \(C_i \) to \(C_j \) in \(G^\text{sc} \) iff there exists \(x \in C_i \) and \(y \in C_j \) s.t. \((x, y) \in E(G)\).
\[C_{\text{scc}} : \]

\[\begin{align*}
1, 2, 5 & \rightarrow & 3, 4 \\
6, 7 & \rightarrow & 8 \\
\end{align*} \]

\text{Note: } \quad C_{\text{scc}} \ \text{is necessarily acyclic.}

\text{Topological sort:}

\[\begin{align*}
C_1 & \rightarrow & C_2 & \rightarrow & C_3 & \rightarrow & C_4 \\
1, 2, 5 & \rightarrow & 3, 4 & \rightarrow & 6, 7 & \rightarrow & 8 \\
\end{align*} \]
Stack: bottom

2 5 1 | 4 3 | 6 7 | 8
top

Parent:

n | n | n | n

Output:

Component 1: 1 5 2

... 2: 3 4

... 3: 7 6

... 4: 8

See Examples: S 4 and out 4
Prototype for DFS(·, ·)

void DFS(Graph G, List S);

call it on S: 1 2 3 ... n

DFS(G, S)

DFS(G^T, S)

use status of S to determine a topological sort of G.
Appendix B.5 Trees

Defn

A rooted tree is a tree in which one vertex is distinguished as the root.

![Diagram of a rooted tree]

Example

- x is parent of z.
- y, z are children of x.

Height

- y: height = 3
- x: depth = 0
- z: depth = 2
- r: depth = 3

Subtree rooted at x

- Height(x) = 2
A vertex with no children is a leaf.

A non-leaf is an internal node.

Note: 'node' = 'vertex'.

Defn. The height of a rooted tree is the depth of its deepest leaf.

Defn. The height of a node \(x \) in the height of subtree rooted at \(x \).
Definition

A binary tree is a rooted tree in which every node has at most 2 children, identified as left child and right child.

Example

Same rooted tree, but different binary trees.
Recursive definition of height of a binary tree T

\[
h(T) = \begin{cases}
-\infty & n = 0 \\
0 & n = 1 \\
1 + \max(h(L), h(R)) & n \geq 2
\end{cases}
\]

where $n = \# \text{nodes in } T$, and L, R are the left and right subtrees, respectively.
Exercise (Problem 3.5-4)

Show that any binary tree T with n nodes satisfies

$$h(T) \geq \lceil \lg(n) \rceil.$$

Hint: Use strong induction on n, beginning at $n=1$

Hint: First show

$$\lceil \lg(2k+1) \rceil = \lceil \lg(2k) \rceil$$

for any $k \in \mathbb{Z}^+$.
Definition

A complete binary tree (CBT) is a B.T. in which all leaves have same depth and all internal nodes have 2 children.

Example

\[\text{(# nodes at depth } d) = 2^d \]