1. Find the value of \(\sum_{k=1}^{n} (2k-1) \) (5 points)

2. Evaluate the sum \(\sum_{k=0}^{\infty} (4k+1)2^k \) (10 points)

3. Prove \(\log \prod_{k=1}^{n} a_k = \sum_{k=1}^{n} \log(a_k) \) (5 points)

4. (20 points) The following pseudo-code is for a procedure called Insertion Sort, which takes as parameter an array A[1…n] of length n and sorts the sequence (array A) in ascending order.

\[
\text{for } j \leftarrow 2 \text{ to } \text{length}[A] \\
\quad \text{do } key \leftarrow A[j] \\
\quad \quad i \leftarrow j - 1 \\
\quad \quad \text{while } i > 0 \text{ and } A[i] > key \\
\quad \quad \quad \text{do } A[i+1] \leftarrow A[i] \\
\quad \quad \quad \quad i \leftarrow i - 1 \\
\quad \quad \quad A[i+1] \leftarrow key
\]

Rewrite the above procedure to sort the values in the array A in descending order.

5. (20 points) Consider the problem of adding two n-bit integers, sorted in two n-element arrays A and B. The sum of the two integers should be stored in binary form in an (n+1)-element array C. State the problem formally and write pseudo-code for adding the two integers.

6. (20 points) Consider sorting n numbers stored in array A by first finding the smallest element of A and exchanging it with the element in A[1]. Then find the second smallest element of A and exchange it with A[2]. Continue in this manner for the first \(n - 1 \) elements of A. Write pseudo-code for this algorithm, which is known as Selection sort.
7. (20 points) Consider the searching problem:

Input: A sequence of \(n \) numbers \(A = \{a_1, a_2, \ldots, a_n\} \) and a value \(v \).

Output: An index \(i \) such that \(v = A[i] \) or the special value NIL if \(v \) does not appear in \(A \).

Assume that the sequence \(A \) is sorted. The objective is to search the sequence for the given value \(v \). In order to achieve that, we can check the midpoint of the sequence against \(v \) and eliminate half of the sequence from further consideration. **Binary Search** is an algorithm that repeats this procedure, halving the size of the remaining portion of the sequence each time. Write pseudo-code, either iterative or recursive, for the binary search.