11. Newton's law of universal gravitation tells us that the force exerted by one particle on another is

\[F = \frac{G m_1 m_2}{r^2} \]

where the universal gravitational constant is found experimentally to be

\[G = 6.673 \times 10^{-11} \text{ N m}^2/\text{kg}^2. \]

The mass of each object is \(m_1 \) and \(m_2 \), respectively, and \(r \) is the distance between the two particles. Use Newton's law of universal gravitation to find the force exerted by the earth on the moon, assuming that

- the mass of the earth is approximately \(6 \times 10^{24} \text{ kg} \),
- the mass of the moon is approximately \(7.4 \times 10^{22} \text{ kg} \), and
- the earth and the moon are an average of \(3.9 \times 10^8 \text{ m} \) apart.

12. We know the earth and the moon are not always the same distance apart. Find the force the moon exerts on the earth for 10 distances between \(3.8 \times 10^8 \text{ m} \) and \(4.0 \times 10^8 \text{ m} \).

*produce table & plot

\[\text{put } \text{last name}.m \]
\[\& \text{ eps} \]

files into directory \textbf{hw1} \textbf{e} or
\textbf{m}tracked on \textbf{we}b\textbf{p}\textbf{g}

\[\text{Annotate your } .m \text{ file } \]
\[\text{w. comments} \]

\[\text{Synapsis:} \]
\[\text{go comment} \]