QUIZ 2
CMPS 12a - Spring 02
Thomas Raffill

Name: __________________________
Student ID: ______________________

This exam is closed book, closed notes, no electronic devices. Show all work.
Partial credit given for partial solutions. Presentation counts! Be legible and
coherent for full credit.

Question 1: ______ (out of 10)
Question 2: ______ (out of 10)
Question 3: ______ (out of 10)
Question 4: ______ (out of 10)
Question 5: ______ (out of 10)
Question 6: ______ (out of 10)
Question 7: ______ (out of 10)
Question 8: ______ (out of 10)
Question 9: ______ (out of 10)
Question 10: ______ (out of 10)

Total: ______ (out of 100)
1. (10 points)
Assume you already have a function

```java
boolean divisibleBy(int a, int b)
```

which returns true if a is divisible by b, otherwise returns false.

Write a code fragment to check whether a number is divisible by 2, 5 or 11 by calling this function.

The code fragment should print out three lines:
A line saying the number is or is not divisible by 2.
A line saying the number is or is not divisible by 5.
A line saying the number is or is not divisible by 11.

You don't have to write the function, just show how to call it.

Solution:

```java
if (divisibleBy(x, 2))
    {
        System.out.println(x + " is divisible by 2."");
    }
else
    {
        System.out.println(x + " is not divisible by 2.");
    }
if (divisibleBy(x, 5))
    {
        System.out.println(x + " is divisible by 5.");
    }
else
    {
        System.out.println(x + " is not divisible by 5.");
    }
if (divisibleBy(x, 11))
    {
        System.out.println(x + " is divisible by 11.");
    }
else
    {
        System.out.println(x + " is not divisible by 11.");
    }
```
2. (10 points)
What does this program print out? **Hint:** The function name is meaningful.

```java
public class PrintRows
{
    public static void main(String[] argv)
    {
        printfRow(5);
        printfRow(2);
    }

    public static void printfRow(int n)
    {
        for (int i = 1; i <= n; i++)
        {
            System.out.print("X");
        }
        System.out.println();
    }
}
```

Solution: It prints a row of 5 X's followed by a row of 2 X's:

```
XXXXX
XX
```
3. (10 points)
Identify the compiler error in the following code fragment. Explain the error and how to fix it.

```
public boolean isEven(int k)
{
    if (k % 2 == 0)
    {
        boolean n = true;
    }
    else
    {
        boolean n = false;
    }
    return n;
}
```

Solution: The return statement accesses the variable n outside of its scope. There are various ways to fix it. The simplest would be to declare n in the beginning of the function before the conditional branch:

```
public boolean isEven(int k)
{
    boolean n;
    if (k % 2 == 0)
    {
        n = false;
    }
    else
    {
        n = true;
    }
    return n;
}
```
4. (10 points)
What does the following program print out?

class TrickyScope
{
 public static void main(String[] argv)
 {
 int i = 10, n = 20;
 printNumber(n);
 }

 public static void printNumber(int i)
 {
 System.out.println(i);
 }
}

Solution: 20. The trick is that the variable \texttt{i} in the subroutine refers to the value 20 that was passed to it, and not the \texttt{i} in the main function.
5. (10 points)
Which of the following two boolean expressions will correctly avoid a zero division error when \(x = 0 \)?

(a) \((x == 0 \text{ || } 3/x > 5) \)

and

(b) \((3/x > 5 \text{ || } x == 0) \)

Solution: (a). The expressions are evaluated left-to-right in a lazy fashion. The expression (a) will avoid a zero division error, because if \(x = 0 \), then the left side of the disjunction is satisfied and the entire expression will evaluate to true without evaluating the right side of the disjunction.
6. (10 points)

What does the following program print out?

class TrickyParameterPassing {
 public static void main(String[] argv)
 {
 int i = 3;
 int j = f(i) + g(i);
 System.out.println("The answer is " + j);
 }

 public static int f(int x)
 {
 return x*x;
 }

 public static int g(int x)
 {
 return x + f(x);
 }
}

Solution: It will print out: The answer is 21
This code computes and assigns to j the expression f(3) + g(3) = 3 · 3 + 3 + 3 · 3 = 9 + 12 = 21.
7. (10 points)
What does the following code fragment print out?

class TrickyFunction
{
 public static void main(String[] argv)
 {
 int a = 10;
 triple(a);
 System.out.println("The value of a is " + a);
 }

 public static void triple(int a)
 {
 a = 3*a;
 }
}

Solution: It prints out: The value of a is 10
The trick is that the expression triple(a) does evaluate to 30, but it is not
assigned to a and the value of a is unchanged by the function call.
8. (10 points)
Write a function called isSquare which has two int parameters a and b and returns a boolean which is true only if one of them is the square of the other (in other words, either $a = b^2$ or $b = a^2$) and otherwise is false.

Solution: Here is one possible solution for this.

```java
public static boolean isSquare(int a, int b) {
    return (a == b*b || b == a*a);
}
```
9. (10 points)
What does the following program print out?

class TrickyFunctionCall
{
 public static void main(String[] argv)
 {
 int a = 2;
 cube(a);
 System.out.println("The value of a is " + a);
 }

 public static int cube(int x)
 {
 return x*x*x;
 }
}

Solution: It prints out: The value of a is 2
The trick is that the expression cube(a) does evaluate to 8, but it is not assigned to a and the value of a is unchanged by the function call.
10. (10 points)
What is the value of quizBoolean after the following code fragment executes?

```java
boolean quizBoolean;
int a = 100, b = 3, c = 5, d = 9;
quizBoolean = !(b > a || c % d == 0);
```

\bf Solution:} The value of \texttt{quizBoolean} is true.\\n
The entire expression is a negation of a disjunction. The expression is true if the disjunction is false. The first part of the disjunction is false because it is not true that $3 > 100$. The second part of the disjunction is false because the remainder of 5 divided by 9 is 5 and not 0. Since both parts of the disjunction are false, the disjunction is false. Thus, its negation is true.