CMPS 10 Winter 2011- Homework Assignment 4

Problems:
Chapter 3 (p.120): 11, 27, 28ab, 31abcd, 32abc

11. Algorithms A and B perform the same task. On input of size \(n \), algorithm A executes \(0.003n^2 \) instructions, and algorithm B executes \(243n \) instructions. Find the approximate value of \(n \) above which algorithm B is more efficient. (You may use a calculator).

We simply wish to find the point where algorithm A and B have equal execution times; B will be more efficient above this point. Therefore, we simply wish to solve the equation:

\[
0.003n^2 = 243n
\]

We can simplify this to \(n = 243 / .003 \), or \(n = 81000 \). Therefore B will be the more efficient algorithm on input with size greater than 81000.

27. At about what value of \(n \) does an algorithm that does \(100n^2 \) instructions become more efficient than one that does \(0.01(2^n) \) instructions? (Use a calculator).

This problem is exactly the same as problem 11. We must simply solve the equation:

\[
100n^2 = 0.01(2^n)
\]

Using a calculator, we can quickly find that \(n \approx 22.238 \)

28.

a. An algorithm that is \(\Theta(n) \) takes 10 seconds to execute on a particular computer when \(n = 100 \). How long would you expect it to take when \(n = 500 \)?

Since the algorithm is of order \(n \), time scales linearly. We see that 500 is \(5 \times 100 \), so we can calculate the new time to be \(5 \times 10 \) seconds = 50 seconds.

b. An algorithm that is \(\Theta(n^2) \) takes 10 seconds to execute on a particular computer when \(n = 100 \). How long would you expect it to take when \(n = 500 \)?

The algorithm is of order \(n^2 \), so since \(100 \times 5 = 500 \), we use value \(5^2 \). Thus the new complexity is \(5^2 \times 10 = 25 \times 10 = 250 \) seconds.
31. Below is a pseudocode algorithm that prints a set of output values.

1. Get value for n
2. Set the value of k to 1
3. While k is less than or equal to n, do steps 4 through 8
 4. Set the value of j to one-half n
 5. While j is greater than or equal to 1, do steps 6 through 7
 6. Print the value of j
 7. Set the value of j to one-half its former value
 8. Increase k by 1
9. Stop

a. Let n have the value 4. Write the values printed out by this algorithm.

 2 1
 2 1
 2 1
 2 1

b. Let n have the value 8. Write the values printed out by this algorithm.

 4 2 1
 4 2 1
 4 2 1
 4 2 1
 4 2 1
 4 2 1
 4 2 1
 4 2 1
 4 2 1

c. Which of the following best describes the efficiency of this algorithm, where the
 “work unit” is printing a value?

 $\Theta(n^2)$ $\Theta(n \log n)$ $\Theta(n)$ $\Theta(\log n)$

 The efficiency of this algorithm is $\Theta(n \log n)$.

 Explanation:
 Recall that $\log = \log_2$. The outer loop iterates n times total, and for each outer loop, the
 inner loop iterates $\log n$ times because it takes one-half of its former value. The print
 statement is then executed a total of $(n \log n)$ times.

d. How many work units would you expect this algorithm to do if $n = 16$?

 Using the efficiency equation: $n \log n = 16 \log 16 = 16 \times 4 = 64$ work units
32. Chapter 2 contains an algorithm that finds the largest value in a list of n values.

a. What is the order-of-magnitude of the largest-value algorithm, where the work unit is comparisons of values from the list?

Solution:
The order-of-magnitude of work done is n.

Explanation:
The work done is $n-1$. For example, if $n = 5$, then the comparison $(A_i > \text{largest-so-far})$ will be executed 4 times. Ignoring lower-order terms, the order-of-magnitude is n.

b. Suppose that you want to find the second-largest value in the list. Find the order of magnitude of the work done if you use the following algorithm: Sort the list, using selection sort, then directly get the second-largest value.

Solution:
Order-of-magnitude of the work done is n^2.

Explanation:
The order-of-magnitude of the work done for selection sort is n^2 (see textbook for explanation). After sorting the list in increasing order, the second-largest value is just the second value from the end of the list. This means the work done here is a constant value and does not contribute to the overall order-of-magnitude.

c. Suppose that you want to find the second-largest value in the list. Find the order of magnitude of the work done if you use the following algorithm: Run the largest-value algorithm twice, first to find (and eliminate from the list) the largest value, then to find the second-largest value.

Solution:
The order-of-magnitude of the work done is n.

Explanation:
The work done for running the largest-value algorithm twice and eliminate a number from the list on the second run is $(n-1)+(n-2) = 2n-3$. Ignoring constants and lower-order terms, the order-of-magnitude is simply n.