Camera Calibration

CMPE 264: Image Analysis and Computer Vision
Spring’02, Hai Tao
4/15/02- 4/17/02
The problem of camera calibration

- Estimation of the 3D geometry of the scene from images is an important task for a machine vision system.
- For a perspective camera, recall that the imaging process can be described as
 \[
 \begin{bmatrix}
 x_{im} \\
 y_{im} \\
 1
 \end{bmatrix}
 \cong
 K[R,T]
 \begin{bmatrix}
 X_w \\
 Y_w \\
 Z_w \\
 1
 \end{bmatrix}
 \]
 where \(K \) is the camera matrix and \(T = -RT \)

- \[
 K = \begin{bmatrix}
 f_x & 0 & u_0 \\
 0 & f_y & v_0 \\
 0 & 0 & 1
 \end{bmatrix}
 \]
 and \(f_x = f_s x, f_y = f_s y \)
- If the camera matrix \(K \) and the camera motion \(R \) and \(T \) are known in advance, then the scene geometry can be computed easily.
- The process of estimating \(K \) is called camera calibration
The problem of camera calibration

Two categories of camera calibration algorithms

- Calibration using calibration patterns – taking multiple images of a pattern from different viewpoints. Estimating camera matrix K using these images
- Auto-calibration – estimating camera K directly from real image sequences

Methods covered in this lecture are in the first category

- Tsai’s calibration algorithm – direct recovery of camera parameters
- Estimating camera parameters from projection matrix
- Zhenyou Zhang’s calibration algorithm using a planar calibration object

Figure 6.1 The typical calibration pattern used in this chapter.
Direct parameter calibration (Tsai 1987)

- **Notation**

 - $P_i = [X_i^w, Y_i^w, Z_i^w]^T$ - the known 3D position of the ith pattern point in the world coordinate system
 - $p_i = [x_{i,im}, y_{i,im}]^T$ - image coordinates of the ith point
 - $R = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$ - the rotation matrix
 - $T = \begin{bmatrix} T_x \\ T_y \\ T_z \end{bmatrix}$ - the translation vector
 - $K = \begin{bmatrix} f_x & 0 & u_0 \\ 0 & f_y & v_0 \\ 0 & 0 & 1 \end{bmatrix}$ - the camera matrix, with four unknown parameters
Direct parameter calibration (Tsai 1987)

The basic relationship for each pattern point

\[
\begin{align*}
 x_{im} - u_0 &= f_x \frac{r_{11}X^w + r_{12}Y^w + r_{13}Z^w + T_x}{r_{31}X^w + r_{32}Y^w + r_{33}Z^w + T_z} \\
 y_{im} - v_0 &= f_y \frac{r_{21}X^w + r_{22}Y^w + r_{23}Z^w + T_y}{r_{31}X^w + r_{32}Y^w + r_{33}Z^w + T_z}
\end{align*}
\]

(1)

Which variables are known? Which need to be estimated?

We will assume that the principal point \([u_0, v_0]^T\) is known (usually as the center of the image). \(R, T, f_x, f_y\) need to be estimated. For simplicity, we denote

\[
\begin{align*}
 x_i &= x_{i,im} - u_0 \\
 y_i &= y_{im} - v_0
\end{align*}
\]
Direct parameter calibration (Tsai 1987)

From (1), we obtain the equation

\[x_i f_y (r_{21} X_i^w + r_{22} Y_i^w + r_{23} Z_i^w + T_y) = y_i f_x (r_{11} X_i^w + r_{12} Y_i^w + r_{13} Z_i^w + T_x) \]

(2)

If we denote the aspect ration as \(\alpha = f_x / f_y \) and

\[
egin{align*}
 v_1 &= r_{21} & v_5 &= \alpha r_{11} \\
 v_2 &= r_{22} & v_6 &= \alpha r_{12} \\
 v_3 &= r_{23} & v_7 &= \alpha r_{13} \\
 v_4 &= T_y & v_8 &= \alpha T_x
\end{align*}
\]

then (2) can be written as

\[
x_i X_i^w v_1 + x_i Y_i^w v_2 + x_i Z_i^w v_3 + x_i v_4 - y_i X_i^w v_5 - y_i Y_i^w v_6 - y_i Z_i^w v_7 - y_i v_8 = 0
\]

If we denote \(\mathbf{v} = [v_1, ..., v_8]^T \) and

\[
A = \begin{bmatrix}
 x_1 X_1^w & x_1 Y_1^w & x_1 Z_1^w & x_1 - y_1 X_1^w & - y_1 Y_1^w & - y_1 Z_1^w & - y_1 \\
 x_2 X_2^w & x_2 Y_2^w & x_2 Z_2^w & x_2 - y_2 X_2^w & - y_2 Y_2^w & - y_2 Z_2^w & - y_2 \\
 & & & & & & \\
 x_N X_N^w & x_N Y_N^w & x_N Z_N^w & x_N - y_N X_N^w & - y_N Y_N^w & - y_N Z_N^w & - y_N \\
\end{bmatrix}
\]

(3)

then \(A \mathbf{v} = 0 \)
Direct parameter calibration (Tsai 1987)

- If \(N \geq 7 \), and the points are not coplanar, and the the rank of \(A \) is 7, then there is a nontrivial solution, which is the eigenvector corresponding to the 0 eigenvalue of \(A^T A \). In practice the solution is the eigenvector corresponding to the smallest eigenvalue of \(A^T A \). Tsai has proved that the rank of \(A \) is 7 in the ideal case.

- Suppose the eigenvector is \(\overrightarrow{v} \), then \(\overrightarrow{v} = \gamma [r_{21}, r_{22}, r_{23}, T_y, \alpha r_{11}, \alpha r_{12}, \alpha r_{13}, \alpha T_x]^T \)

The scale \(\gamma \) and \(\alpha \) can be computed from

\[
\gamma = ||[\overrightarrow{v}_1, \overrightarrow{v}_2, \overrightarrow{v}_3]|| \text{ or } \gamma = - ||[\overrightarrow{v}_1, \overrightarrow{v}_2, \overrightarrow{v}_3]||
\]

\[
\alpha = ||[\overrightarrow{v}_5, \overrightarrow{v}_6, \overrightarrow{v}_7]|| / ||[\overrightarrow{v}_1, \overrightarrow{v}_2, \overrightarrow{v}_3]||
\]

then

\[
T_x = \frac{\overrightarrow{v}_8}{\gamma \alpha}
\]

\[
T_y = \overrightarrow{v}_4 / \gamma
\]

\[
[r_{21}, r_{22}, r_{23}] = [\overrightarrow{v}_1, \overrightarrow{v}_2, \overrightarrow{v}_3] / \gamma
\]

\[
[r_{11}, r_{12}, r_{13}] = [\overrightarrow{v}_5, \overrightarrow{v}_6, \overrightarrow{v}_7] / \gamma \alpha
\]

\[
[r_{31}, r_{32}, r_{33}]^T = [r_{11}, r_{12}, r_{13}]^T \times [r_{21}, r_{22}, r_{23}]^T
\]
Direct parameter calibration (Tsai 1987)

- Make \(R \) orthonormal – in the previous computation, the first two rows of the rotation matrix may not be orthogonal to each other. To make \(R \) orthonormal, do the following:
 - Compute SVD of \(R \) as \(R = UDV^T \), update \(R' = UIV^T \)

- Determine the sign of \(\gamma \) by making sure \(x_i \) and \(r_{11}X_i^w + r_{12}Y_i^w + r_{13}Z_i^w + T_x \) have the same sign

- Now, we have computed \(R, T_x, T_y, \alpha \) and need to estimate \(T_z, f_x \). To do this, recall (1)

\[
x_i(r_{31}X_i^w + r_{32}Y_i^w + r_{33}Z_i^w + T_z) = f_x(r_{11}X_i^w + r_{12}Y_i^w + r_{13}Z_i^w + T_x)
\]

For all the points this can be written as

\[
F\begin{bmatrix} T_z \\ f_x \end{bmatrix} = \begin{bmatrix} b \end{bmatrix}
\]

where

\[
F = \begin{bmatrix} x_1 & -r_{11}X_i^w + r_{12}Y_i^w + r_{13}Z_i^w + T_x \\ \vdots \\ x_N & -r_{11}X_N^w + r_{12}Y_N^w + r_{13}Z_N^w + T_x \end{bmatrix}
\]

\[
b = \begin{bmatrix} -x_i(r_{31}X_i^w + r_{32}Y_i^w + r_{33}Z_i^w) \\ \vdots \\ -x_N(r_{31}X_N^w + r_{32}Y_N^w + r_{33}Z_N^w) \end{bmatrix}
\]

Solution

\[
\begin{bmatrix} T_z \\ f_x \end{bmatrix} = (F^T F)^{-1} F^T b
\]

(5)
Summary of Tsai’s algorithm

Construct the matrix A from 2D and 3D coordinates of feature points (in the 2D case, subtract the center) as in (3)

Solve $A\mathbf{v} = 0$ by computing the eigenvector \mathbf{v} corresponding to the smallest eigenvalue of $A^T A$

Solve R, T_z, T_y, T_x and the scale λ up to a sign using (4)

Determine the sign of λ by making sure \mathbf{x}_i and $r_{11}x_i^w + r_{12}y_i^w + r_{13}z_i^w + T_x$ have the same sign

Construct the matrices F and b and solve T_z, f_x using (5)
Calibration via recovering the camera projection matrix

Recall that

\[
\begin{bmatrix}
 x_{im} \\
 y_{im} \\
 1
\end{bmatrix}
= M
\begin{bmatrix}
 X_w \\
 Y_w \\
 Z_w \\
 1
\end{bmatrix}
\]

This can be written as

\[
x_i = \frac{m_{11}X_i^w + m_{12}Y_i^w + m_{13}Z_i^w + m_{14}}{m_{31}X_i^w + m_{32}Y_i^w + m_{33}Z_i^w + m_{34}}
\]
\[
y_i = \frac{m_{21}X_i^w + m_{22}Y_i^w + m_{23}Z_i^w + m_{24}}{m_{31}X_i^w + m_{32}Y_i^w + m_{33}Z_i^w + m_{34}}
\]

The basic idea is to recover \(M \) first using linear a method, then recover all the other parameters.
Calibration via recovering the camera projection matrix

Since

\[x_i (m_{31} X_i^w + m_{32} Y_i^w + m_{33} Z_i^w + m_{34}) = m_{11} X_i^w + m_{12} Y_i^w + m_{13} Z_i^w + m_{14} \]
\[y_i (m_{31} X_i^w + m_{32} Y_i^w + m_{33} Z_i^w + m_{34}) = m_{21} X_i^w + m_{22} Y_i^w + m_{23} Z_i^w + m_{24} \]

this can be written as a linear system

\[\mathbf{A} \mathbf{m} = \mathbf{0} \]

where

\[
\mathbf{A} = \begin{bmatrix}
X_1^w & Y_1^w & Z_1^w & 1 & 0 & 0 & 0 & 0 & -x_1 X_1^w & -x_1 Y_1^w & -x_1 Z_1^w & -x_1 \\
0 & 0 & 0 & 0 & X_1^w & Y_1^w & Z_1^w & 1 & -y_1 X_1^w & -y_1 Y_1^w & -y_1 Z_1^w & -y_1 \\
& & & & \vdots & & & & & & & \\
X_N^w & Y_N^w & Z_N^w & 1 & 0 & 0 & 0 & 0 & -x_N X_N^w & -x_N Y_N^w & -x_N Z_N^w & -x_N \\
0 & 0 & 0 & 0 & X_N^w & Y_N^w & Z_N^w & 1 & -y_N X_N^w & -y_N Y_N^w & -y_N Z_N^w & -y_N
\end{bmatrix}
\]

\[\mathbf{m} = [m_{11} \quad m_{12} \quad m_{13} \quad m_{14} \quad m_{21} \quad m_{22} \quad m_{23} \quad m_{24} \quad m_{31} \quad m_{32} \quad m_{33} \quad m_{34}]^T \]
Calibration via recovering the camera projection matrix

Since the rank of A is 11 (why?), the solution is the column of V corresponding to the zero singular value of A, with $A = UDV^T$. In practice, the solution is the eigenvector corresponding to the smallest eigenvalue of $A^T A$.

We denote the solution is $\hat{M} = \begin{bmatrix} q_1^T \\ q_2^T \\ q_3^T \\ q_4 \end{bmatrix} = \gamma M$

Since $M = K[R,T] = \begin{bmatrix} f_x r_{11} + u_0 r_{31} & f_x r_{12} + u_0 r_{32} & f_x r_{13} + u_0 r_{33} & f_x T_x + u_0 T_z \\ f_y r_{21} + v_0 r_{31} & f_y r_{22} + v_0 r_{32} & f_y r_{23} + v_0 r_{33} & f_y T_y + v_0 T_z \\ r_{31} & r_{32} & r_{33} & T_z \end{bmatrix}$

Therefore $\gamma = \pm \sqrt{\hat{m}_{31}^2 + \hat{m}_{32}^2 + \hat{m}_{33}^2}$. Using γ to normalize \hat{M}. The result is still denoted as \hat{M}, then

$r_{3i} = \hat{m}_{3i}$, $u_0 = q_1^T q_3$, $f_x = \sqrt{q_1^T q_1 - u_0^2}$, $r_{i3} = (\hat{m}_{i3} - u_0 \hat{m}_{33}) / f_x$, $T_x = (\hat{m}_{i4} - u_0 T_z) / f_x$

$T_z = \hat{m}_{34}$, $v_0 = q_2^T q_3$, $f_y = \sqrt{q_2^T q_2 - v_0^2}$, $r_{2i} = (\hat{m}_{2i} - v_0 \hat{m}_{33}) / f_y$, $T_y = (\hat{m}_{24} - v_0 T_z) / f_y$

Make R orthornormal. If the world reference frame is in front of the camera, choose sign so that $T_z > 0$.

Camera calibration using planar patterns – Zhang 00

- Using known coordinates of many feature points on a planar pattern
- Capturing multiple images from different viewpoints (or equivalently, with the pattern at different positions and orientations)
- Automatically locating the feature points in the images
- Recovering homographies for each frames
- Recovering camera parameters from the homographies

A full 5-parameter camera model is used

\[
K = \begin{bmatrix}
 f_x & s & u_0 \\
 0 & f_y & v_0 \\
 0 & 0 & 1
\end{bmatrix}
\]
Camera calibration using planar patterns – Zhang 00
Calibration results

\[
K = \begin{pmatrix}
832.5 & 0.204494 & 303.959 \\
0 & 832.53 & 206.585 \\
0 & 0 & 1 \\
\end{pmatrix}
\]

\[
K1 = -0.228601 \quad k2 = 0.190353
\]

\[
R1 = \begin{pmatrix}
0.992759 & -0.026319 & 0.117201 \\
0.0139247 & 0.994339 & 0.105341 \\
-0.11931 & -0.102947 & 0.987505 \\
\end{pmatrix}
\]

\[
T1 = -3.84019 \quad 3.65164 \quad 12.791
\]

\[
R2 = \begin{pmatrix}
0.997397 & -0.00482564 & 0.0719419 \\
0.0175608 & 0.983971 & -0.17746 \\
-0.0699324 & 0.178262 & 0.981495 \\
\end{pmatrix}
\]

\[
T2 = -3.71693 \quad 3.76928 \quad 13.1974
\]

\[
R3 = \begin{pmatrix}
0.915213 & -0.0356648 & 0.401389 \\
-0.00807547 & 0.994252 & 0.106756 \\
-0.402889 & -0.100946 & 0.909665 \\
\end{pmatrix}
\]

\[
T3 = -2.94409 \quad 3.77653 \quad 14.2456
\]

...
Without loss of generality, we assume the model plane is \(Z_w = 0 \), then

\[
\begin{bmatrix}
 x \\
 y \\
 1
\end{bmatrix}
\equiv
K \begin{bmatrix}
 r_1 \\
 r_2 \\
 r_3 \\
 T
\end{bmatrix}
\begin{bmatrix}
 X_w \\
 Y_w \\
 0 \\
 1
\end{bmatrix}
= K \begin{bmatrix}
 r_1 \\
 r_2 \\
 T
\end{bmatrix}
\begin{bmatrix}
 X_w \\
 Y_w \\
 1
\end{bmatrix}
= H
\begin{bmatrix}
 X_w \\
 Y_w \\
 1
\end{bmatrix}
\]

The 2D image coordinates and the corresponding 2D coordinates on the 3D image plane are related by a homography \(H \). Homography is defined up to a scale factor

\[H = \lambda K \begin{bmatrix}
 r_1 \\
 r_2 \\
 T
\end{bmatrix} \]

Constraints on the intrinsic parameter

Suppose \(H = [h_1, h_2, h_3] \), then \([h_1, h_2, h_3] = \lambda K \begin{bmatrix}
 r_1 \\
 r_2 \\
 T
\end{bmatrix} \). Since \(r_1 \) and \(r_2 \) are orthonormal, therefore

\[
\begin{align*}
 h_1^T K^{-T} K^{-1} h_2 &= 0 \\
 h_1^T K^{-T} K^{-1} h_1 &= h_2^T K^{-T} K^{-1} h_2
\end{align*}
\]

which gives two constraints for computing \(B = K^{-T} K^{-1} \)
Close-form solution

We want to recover B first where

$$B = K^{-T} K^{-1} = \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{bmatrix} = \begin{bmatrix} \frac{1}{f_x^2} & -\frac{s}{f_x f_y} & \frac{v_0 s - u_0 f_y}{f_x^2 f_y} \\ -\frac{s}{f_x f_y} & \frac{s^2}{f_x^2 f_y^2} + \frac{1}{f_y^2} & \frac{s(v_0 s - u_0 f_y)}{f_x^2 f_y^2} - \frac{v_0}{f_y^2} \\ \frac{v_0 s - u_0 f_y}{f_x^2 f_y} & \frac{s(v_0 s - u_0 f_y)}{f_x^2 f_y^2} - \frac{v_0}{f_y^2} & \frac{(v_0 s - u_0 f_y)^2}{f_x^2 f_y^2} + \frac{v_0^2}{f_y^2} + 1 \end{bmatrix}$$

If we denote

$$b = [b_{11}, b_{12}, b_{22}, b_{13}, b_{23}, b_{33}] \quad h_i = [h_{i1}, h_{i2}, h_{i3}]^T$$

$$v_{ij} = [h_{i1} h_{j1}, h_{i1} h_{j2} + h_{i2} h_{j1}, h_{i2} h_{j2}, h_{i3} h_{j1} + h_{i1} h_{j3}, h_{i3} h_{j2} + h_{i2} h_{j3}, h_{i3} h_{j3}]^T$$

then

$$h_i^T B h_j = v_{ij}^T b$$

To verify this, e.g. the coefficient of b_{12} is $h_{i1} h_{j2} + h_{i2} h_{j1}$

$$h_i^T B h_j = [h_{i1} \ h_{i2} \ h_{i3}] \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{bmatrix} \begin{bmatrix} h_{j1} \\ h_{j2} \\ h_{j3} \end{bmatrix}$$
Close-form solution

- The two constraints can be written as

\[
\begin{bmatrix}
 v_{12}^T \\
 v_{11}^T - v_{22}^T
\end{bmatrix}
\begin{bmatrix}
 b
\end{bmatrix} =
\begin{bmatrix}
 0 \\
 0
\end{bmatrix}
\]

If \(N \) images of the model plane are observed, by stacking \(N \) such equations, we have

\[
Vb = 0
\]

If \(N \geq 3 \), we can solve \(B \). If we have 2 images, 4 constraints are available, we can solve for 4 camera parameters. Usually, we will let \(s = 0 \). If we have only one image, we will further assume that \(u_0, v_0 \) are known and try to solve for \(f_x \) and \(f_y \).
Once B is known, we can compute camera parameters from

$$B = \lambda \begin{bmatrix}
\frac{1}{f_x^2} & -s & \frac{v_0 s - u_0 f_y}{f_y^2} \\
-\frac{s}{f_x f_y} & \frac{s^2}{f_x f_y} + \frac{1}{f_y^2} & \frac{v_0^2 - u_0 f_y}{f_y^2} \\
\frac{v_0 s - u_0 f_y}{f_x^2 f_y} & \frac{s(v_0 s - u_0 f_y)}{f_x f_y^2} - \frac{v_0}{f_y^2} & \frac{(v_0 s - u_0 f_y)^2}{f_x f_y^2} + \frac{v_0^2}{f_y^2} + 1
\end{bmatrix}$$

More specifically,

$$v_0 = (b_{12} b_{13} - b_{11} b_{23})/(b_{11} b_{22} - b_{12}^2)$$

$$s = -b_{12} f_x f_y / \lambda$$

$$\lambda = b_{33} - [b_{13}^2 + v_0 (b_{12} b_{13} - b_{11} b_{23})] / b_{11}$$

$$u_0 = s v_0 / f_x - b_{13} f_x^2 / \lambda$$

$$f_x = \sqrt{\lambda / b_{11}}$$

$$f_y = \sqrt{\lambda b_{11} / (b_{11} b_{22} - b_{12}^2)}$$
Recover camera motion \(R \) and \(T \)

Once camera matrix \(K \) is recovered, based on
\[
H = K[r_1, r_2, T]
\]
we can recover the camera motion as follows
\[
\begin{align*}
 r_1 &= \lambda K^{-1}h_1 \\
 r_2 &= \lambda K^{-1}h_2 \\
 r_3 &= r_1 \times r_2
\end{align*}
\]
\[
T = \lambda K^{-1}h_3
\]

\(R \) matrix needs to be made orthonormal

Gradient methods such as the Levenberg-Marquardt method is then used to refined the result by solving the following optimization problem
\[
\min_{K, R, T} \sum_{i=1}^{N} \sum_{j=1}^{m} \left\| m_{ij} - \hat{m}(K, R, T, M_j) \right\|^2
\]
where \(M_j \) is the 3D coordinates for the \(j \)th pattern point, \(m_{ij} \) is the projection of this point in the \(i \)th image

For more details see