Energy-Efficient Channel Access Protocols

Introduction
- Sensor networks are a special class of multi-hop wireless networks.
- Energy conservation is very critical in improving the life time of the networks.
- Some of the interesting features are:
 - Ad hoc deployment.
 - Very low or no mobility.

Motivation
- Major source of energy consumption is the radio.
- Energy wastage due to idle listening and collisions.
- Today’s radios have a special low power standby mode (or sleep mode) to save power.
- Switching the radio to sleep mode whenever possible could achieve potential savings.

Measurement on WLAN Cards

![Graph showing power consumption of a Cisco 400 access point in different modes.](image)
S-MAC: Sensor MAC

- Contention based MAC.
- Energy savings by periodic sleep, overhearing avoidance and message passing.
- SYNC packets are used to maintain sleep schedules.
- Less throughput and per-node fairness.

Sensor Radios (RFM TR1000)

<table>
<thead>
<tr>
<th>Mode</th>
<th>Power consumption in mW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmit</td>
<td>14.55</td>
</tr>
<tr>
<td>Receive</td>
<td>13.50</td>
</tr>
<tr>
<td>Standby</td>
<td>15x 10^6 mW</td>
</tr>
</tbody>
</table>

Table 1: Average power consumption in different modes

<table>
<thead>
<tr>
<th>State</th>
<th>Transmit</th>
<th>Receive</th>
<th>Standby</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>0</td>
<td>29</td>
<td>10</td>
</tr>
<tr>
<td>Power</td>
<td>12</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>Standby</td>
<td>16</td>
<td>29</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 2: Transition times in µs

Measurement on WLAN Cards

![Graph](image)
S-MAC Overview
- Time is divided into cycles of listen and sleep intervals.
- Schedules are established such that neighboring nodes have synchronous sleep and listen periods.
- SYNC packets are exchanged periodically to maintain schedule synchronization.

S-MAC Operation
- SYNC packets are transmitted only during the SYNC period (long enough to send 1 SYNC packet) of the listen interval.
- Data transmissions are initiated by sending RTS during the DATA period (long enough to send an RTS and overhear a CTS) of the listen interval.

Schedule Establishment
- Node listens for a certain amount of time.
- If it does not hear a schedule, it chooses a time to sleep and broadcast this information immediately.
- This node is called the ‘Synchronizer’.
- If a node receives a schedule before establishing its schedule, it just follows the received schedule.
- If a node receives a different schedule, after it has established its schedule, it listens for both the schedules.
S-MAC Features
- Collision Avoidance
 - Similar to 802.11 (RTS/CTS handshake).
- Overhearing Avoidance
 - All the immediate neighbors of the sender and receiver go to sleep.
- Message Passing
 - Long messages are broken down into smaller packets and sent continuously once the channel is acquired by RTS/CTS handshake.
 - Increases the sleep time, but leads to fairness problems.

TRAMA: Traffic Adaptive Medium Access Control Protocol
- Collision freedom by distributed election based on Neighborhood-Aware Contention Resolution (NCR).
- Traffic-adaptive scheduling to increase the channel utilization.
- Radio-mode control for energy efficiency.
Overview
- Single, time-slotted channel access for both data and signaling.
- Organized as sections of random- and scheduled access periods.
- Random access period used for signaling and scheduled access period used for data transmission.

Neighborhood-aware Contention Resolution (NCR)
- Each node maintains two-hop neighbor information.
- For every contention slot, all the nodes compute priorities based on the unique node id, \(n \), and current time slot id, \(t_s \), as:
 \[p_n = \text{randomhash}(n, t_s) \]
- The node with the highest priority among the two-hop neighborhood is elected as the transmitter.

Time slot organization

NCR
- NCR prevents collisions due to hidden terminals. (A set of protocols based on NCR is developed by Lichun and JJ for scheduling-based channel access in ad hoc networks).
- TRAMA uses NCR to elect the transmitter.
- To elect the receiver TRAMA uses the schedule information announced by the transmitter.
Components of TRAMA

- Neighbor Protocol (NP).
- Schedule Exchange Protocol (SEP).
- Adaptive Election Algorithm (AEA).

Neighbor Protocol

- Main Function: Gather two-hop neighborhood information by using signaling packets.
- Incremental neighbor updates to keep the size of the signaling packet small.
- Periodically operates during random access period.

Packet Formats

<table>
<thead>
<tr>
<th>Type</th>
<th>Source</th>
<th>Target</th>
<th>Origin</th>
<th>SEQ</th>
<th>NEID</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Schedule Exchange Protocol (SEP)

- Schedule consists of list of intended receivers for future transmission slots.
- Schedules are established based on the current traffic information at the node.
- Propagated to the neighbors periodically.
- SEP maintains consistent schedules for the one-hop neighbors.
Schedule Packet Format

Adaptive Election Algorithm (AEA)

- Decides the node state as either Transmit, Receive or Sleep.
- Uses the schedule information obtained by SEP and a modified NCR to do the election.
- Nodes without any data to send are removed from the election process, thereby improving the channel utilization.

Experimental Setup

- Performance analysis by extensive simulation using Qualnet.
- Compared the performance with both contention-based protocols (IEEE802.11, CSMA and S-MAC) and scheduling-based protocols (NAMA).

Simulation Setup

- Randomly placed 50 nodes in 500x500m area.
- Typical sensor radio TR1000 with 100m range and 115.2kbps.
- Data size: 512 bytes.
- Two different scenarios.
Scenarios

- Synthetic scenario:
 - Synthetic traffic generated at the MAC level based on Poisson arrivals.
- Data gathering application:
 - Sink collects information from sensors by sending out a query.
 - Different placements for sink.
 - Reverse path routing for sending data back to sink.

Sensor Scenario

Performance Metrics

- Average Packet Delivery Ratio:
 - Ratio of number of packets delivered to the number of packets sent.
- Average Queuing Delay.
- Percentage Sleep Time:
 - Percentage of time nodes can be put to sleep mode.
- Average Length of Sleep Time:
 - A measure of energy savings as longer sleeps involve less switching and hence less transient power consumption due to switching.

Delivery Ratio (Synthetic)
Energy Savings (synthetic)

Percentage Sleep

Sleep Interval

Energy Savings (sensor)

Percentage Sleep

Sleep Time

Conclusion

- Significant improvement in delivery ratio in all scenarios when compared to contention-based protocols.
- Significant energy savings compared to S-MAC (which incurs more switching).
- Acceptable latency and traffic adaptive.
Future Works

- Traffic predictions to improve the delay performance.
- Predicting the transmitter without transmitting entire bitmaps based on history to reduce scheduling overhead.