Linear Functions and Examples

Gabriel Hugh Elkaim
Questions?

$$f : \mathbb{R}^n \rightarrow \mathbb{R}^m \quad f(x) = \Delta x$$

$$x = a \hat{e}_1 + b \hat{e}_2$$

$$y = c \hat{e}_1 + d \hat{e}_2$$

$$f([0]) = \begin{bmatrix} \cos \theta \\ -\sin \theta \end{bmatrix}$$
Graviometer Prospecting

\[x_j = P_j - P_{\text{avg}} \]

\[y_i = \text{measured} \]

\[\text{gravity} \]

\[S_i - S_{\text{avg}} \]

\[x_j < 0 \]
\[\text{salt water} \]

\[x_j > 0 \]
\[\text{sedimentary/mineral deposit} \]

\[x_j < 0 \]
\[\text{gas} \]

\[10^{-7} \]
\[\text{g's} \]
Thermal System

\[y_t - \text{sensor } t \]

\[y_i \text{ change in steady state } \]

\[x_t \text{ heat element } t \]

\[y_t = \chi x_t \]

Diffusion Process / Reaction Eq. 1
Illumination with Multiple Lamps

n - lamps
m - small patches or shadows

x_j - power to jth lamp
y_i - illumination on patch

$$a_{ij} = r_{ij} \max (\cos \theta_{ij}, 0)$$
Signal and Interference Power in Wireless System

- Transmit/receive pairs

- P_j - power of the jth transmitter

- s_i - received signal power of ith receiver

- G_{ij} path gain from j to i

- $S = AP$ if $i=j$ and 0 otherwise

- $S_i / S_i = SNR$

- $t = Bp$ if $i=j$, G_{ij} otherwise
Cost of Production (1.2)

\[y = Ax \]

- \(x_j \) price per unit of production input \(j \)
- \(y_i \) cost per unit of product \(i \)
- \(A_{ij} \) unit of production input required to manufacture one unit of product \(i \)
- \(q_i \) quantity of the product
- \(r_j \) total quantity of production input \(j \) that is needed
Cost of Production (2.2)

\[r = \Lambda^T q \]

\[r^T x = (\Lambda^T q)^T x = q^T \Lambda^T x = q^T y \]

\[y = \lambda x \]
Network Traffic and Flows (1.2)

- Flows \(n \) with nodes \(f_1 \ldots f_n \)

- Traffic on link \(i \)

- Flows that pass through link \(i \)

Flow link incidence matrix

\[A_{ij} = \begin{cases} 1 & \text{Flows go through link } i \\ 0 & \text{otherwise} \end{cases} \]

CMPE 240 – Intro. to Linear Dynamical Systems
Network Traffic and Flows (2.2)

\[t = A f \]

Link delays

\[t = A^T d \]

Upstream in the network

\[f^T x^T d = (x f^T d) = t^T d \]

\(A^T \) has a very relevant physical interpretation
Linearization

\[f : \mathbb{R}^n \to \mathbb{R}^m \]

If \(f \) is differentiable at \(x_0 \in \mathbb{R}^n \), then:

If \(x \) near \(x_0 \) \(\implies f(x) \) near \(f(x_0) = Df(x_0)(x-x_0) \)

\[Df(x_0)_{ij} = \frac{df}{dx_j} \bigg|_{x=x_0} \]

\[y = f(x) \] \(\quad \) \(n \times m \)-linear

\[y_0 = f(x_0) \]

\[\delta x = x - x_0 \]

\[\delta y = y - y_0 \]

\[\frac{\delta y}{\delta x} = Df(x_0) \]

\(\downarrow \) \(\text{UNSM} \)
Navigation by Ranging (1.2)
Navigation by Ranging (2.2)

\(p \in \mathbb{R}^q \) is a non-linear function of \((x, y) \in \mathbb{R}^2 \)

\[p_i (x, y) = \sqrt{(x - p_i)^2 + (y - q_i)^2} \]

\[\mathbf{s}_p = \Lambda \begin{bmatrix} \delta x \\delta y \end{bmatrix} \]

\[\mathbf{a}_{i2} = \frac{x_0 - p_i}{\sqrt{(x_0 - p_i)^2 + (y_0 - q_i)^2}} \]

\[\mathbf{a}_{i2} = \frac{y_0 - q_i}{\text{tan} \theta} \]
Broad Categories of Applications

- Linear model or function $y = Ax$
- Some broad categories of applications:
 - Estimation or inversion
 - Control or design
 - Mapping or transformation

(this list is not exclusive; can have combinations)
Estimation or Inversion

y_i is the ith measured or sensor reading (which we know).

x_j is a parameter to be estimated/determined.

ξ_{ij} sensitivity of jth parameter to ith sensor.

1. Find x, given y.
2. Find all x's that are consistent with y.
3. If no such x exists, check that $y = b_x$, find the least x which is "most consistent" with y.

 $y = b_x + D$ non
Control or Design

x is a vector of design parameters or control inputs we can choose.

y is the output or result

Find x such that $y \rightarrow y_{des}$

Find all x's that produce $y \rightarrow y_{des}$

Among all such x's that give $y \rightarrow y_{des}$, choose the best one.
Mapping or Transformation

\[x \text{ is mapped or transformed by } A \text{ into } y \]

defines if there is an \(x \rightarrow y \)

Said on \(x \) that maps into \(y \)

\(\text{find all } x \)'s that map into \(y \).

decode or undo transformation.
Matrix Multiplication as Mixture of Columns

\[y = Ax \quad A \in \mathbb{R}^{m \times n} \]

\[A = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix} \]

\[x_j \in \mathbb{R}^m \]

\[y = x_1 a_1 + x_2 a_2 + \cdots + x_n a_n \]

Each \(x_j \) is a scalar.

\[A = \begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix} \quad x = \begin{bmatrix} 1 \\ -0.5 \end{bmatrix} \quad y = hx = \begin{bmatrix} 0.5 \\ 1.5 \end{bmatrix} \]
Unit Vectors

\[\mathbf{x} = e_j \quad \text{where} \quad j \text{th unit vector} \]

\[e_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad e_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \ldots, \quad e_n = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \]

\[A e_j = a_j \quad \text{\(j \text{th column of } A \)} \]

Inputs \rightarrow \boxed{\text{}} \rightarrow \text{Outputs}
Matrix multiplication as inner product with rows
Geometric Interpretation

\[y_i = \langle \tilde{a}_i, x \rangle = 0 \]
\[y_i = \langle \tilde{a}_i, x \rangle = 1 \]
\[y_i = \langle \tilde{a}_i, x \rangle = 2 \]
\[y_i = \langle \tilde{a}_i, x \rangle = 3 \]
Block Diagram Representation
Example: Block Upper Triangular
Matrix Multiplication as Composition
Column and Row Interpretations
Inner Product Interpretation
Matrix Multiplication Interpretation via Paths
Questions?