VLSI Digital Systems Design

Circuit and Physical Design of Fully-Complementary CMOS Logic Gates
Fan-in

- Fan-in = number of inputs to a gate
- Examples:
 1. Nand g_1 (outg1, in1, in2, in3, in4); fan-in = 4
 2. Nor g_2 (outg2, in1, in2); fan-in = 2
Fan-out

- Fan-out = number of inputs that a gate's output drives
- In units of minimum-sized inverters
- Examples:
 - \text{Nand } g1 \ (\text{outg1}, \ a, \ b, \ c, \ d);
 - \text{Norg2 } (\text{outg2}, \ a, \ e);
 - \text{Not } g3 \ (a, \ f); \quad \text{fan-out} = 2
Large Fan-in Slows Gate

• Resistance of series transistors in pull-up network or pull-down network additive
• Two transistors in series will double the rise or fall time compared to single transistor
Worst-case delay time

- $T_{df} = \text{worst-case fall delay time}$
- $T_{df} = t_{\text{internal-f}} + k \cdot t_{\text{output-f}}$

- $T_{dr} = \text{worst-case rise delay time}$
- $T_{dr} = t_{\text{internal-r}} + k \cdot t_{\text{output-r}}$

- where $k = \text{fan-out}$
 - in units of minimum-sized inverters
Gate Delays

<table>
<thead>
<tr>
<th>Gate</th>
<th>$t_{\text{internal-f}}$</th>
<th>$t_{\text{output-f}}$</th>
<th>$t_{\text{internal-r}}$</th>
<th>$t_{\text{output-r}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>INV</td>
<td>0.08</td>
<td>1.70</td>
<td>0.08</td>
<td>2.10</td>
</tr>
<tr>
<td>ND2</td>
<td>0.20</td>
<td>3.10</td>
<td>0.15</td>
<td>2.10</td>
</tr>
<tr>
<td>ND4</td>
<td>0.68</td>
<td>5.70</td>
<td>0.25</td>
<td>2.10</td>
</tr>
<tr>
<td>ND8</td>
<td>2.44</td>
<td>9.99</td>
<td>0.38</td>
<td>2.20</td>
</tr>
<tr>
<td>NR2</td>
<td>0.14</td>
<td>1.75</td>
<td>0.25</td>
<td>4.10</td>
</tr>
</tbody>
</table>
8-input And, Case 1

- Nand stage1 \((s1out, a, b, c, d, e, f, g, h)\);
- Not stage2 \((s2out, s1out)\);
8-input And, Case 2

- Still 2 stages
- Less fan-in
8-input And, Case 3

- Twice as many stages
- Minimal fan-in
8-input And, Comparison

<table>
<thead>
<tr>
<th>Stage</th>
<th>Stage</th>
<th>Stage</th>
<th>Stage</th>
<th>Total</th>
<th>Case</th>
<th>fall</th>
<th>rise</th>
<th>fall</th>
<th>rise</th>
<th>Delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>2.44</th>
<th>2.18</th>
<th>0.00</th>
<th>0.00</th>
<th>4.62</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.68</td>
<td>4.35</td>
<td>0.00</td>
<td>0.00</td>
<td>5.03</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>3</td>
<td>0.20</td>
<td>0.25</td>
<td>0.20</td>
<td>2.18</td>
<td>2.83</td>
</tr>
</tbody>
</table>
Transistor Sizing

1. Start with minimum-sized devices
2. Determine critical paths
3. Increase the gate size along critical paths
Timing Rules of Thumb, Page 1

• Use Nands
• Avoid Nors
• Output rise and fall time depend on input rise and fall times
 – Keep edges sharp throughout each critical path
Timing Rules of Thumb, Page 2

• Keep fan-out low
 – Below 5-10
 – Use minimal-sized gates to minimize the load on gates with high fan-out
 – Drive high fan-out nets with inverters

• Keep fan-in low
 – Unless low power or low area is more important
Layout Layer Key

aa = poly (input)
bb = poly (input)
cc = poly (internal)

mm = metal (internal)

dd = Vdd (metal)
ss = Vss (metal)

nn = n-diffusion
pp = p-diffusion

-- = gate
** = contact
Vertical-Transistor Inverter Layout

**dddddddddddd-Vdd
 dd
 **
 pp
 aaaaaa
 aa pp
 aa **
 aa mm
 A-aaaa mmmmmm-Z
 aa mm
 aa **
 aa nn
 aaaaaa
 aaaaaa
 nn
 **
 ss
 **ssssssssssssssssssss-Vss
Horizontal-Transistor Inverter Layout

**dddddddddddddd-Vdd

dd

pp--pp

aa mm

A-aaaaaaaaa mmmm-Z

aa mm

nn--nn

ss

**ssssssssssssssss-Vss
Horizontal-Transistor Inv Layout w Central Metal Pass-Through

**dddddddddddddddddddddd-Vdd
 dd
dd
dd
pp--ppmm**
aa cc
mmmmmmmmaammkkkmmmmccmmmmm
 aa cc
A-aaaaaaaaa cccc-Z
 aa cc
mmmmmmmmaammkmmccmmmm
 aa cc
nn--nnmm**
 ss
 ss
 ss
**ssssssssssssssssssssss-Vss
Horizontal-Transistor Inv Layout w Top & Bottom Metal Pass-Thru

ddddddddddd-Vdd

pp

mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

pp

pppp--pp**mm

aa cc

aa cc

aa cc

A-aaaaaaa ccccccc-Z

aa cc

aa cc

aa cc

nnnn--nn**cc

nn

mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

nn

ssssssssssssssssss-Vss
Large-Transistor Inverter Layout

**dddddddddddddddd-Vdd
dd
ddpp--pp
pp--pp
pp--ppmm
aa mm
A-aaaaaaaa mmmm-Z
aa mm
nn--nnmm
nn--nn
ssnn--nn
ss
**ssssssssssssss-Vss
Back-to-Back-Transistor
Inverter Layout

**ddddd\ldots dd-Vdd
dd
pp--pppp--pp**
aa mm aa
A-aaaaaaa mm\ldots mm-Z
aa mm aa
aaaammmmm
aa mm aa
nn--nnnn--nn**
ss
**ssssssssssssssssssssssssssss-Vss
Advantages of Back-to-Back-Transistor Inverter Layout

• Drain area does not increase in size much
 – Drain capacitance does not increase much
• Transistor gain doubled
**dddddddddddddddddddd-Vdd
 dd
 ppppppp**ppppppp
 pp----------pp
 pp--pppppp--pp
 pp--pp**mm--mmmmmm
 pp--pppppp--pp mm
 pp----------pp mm
 pppppp--pppppp mm
 aa mm
 A-aaaaaaaaaaaaa mmmmm-Z
 aa mm
 nnnnnnn--nnnnnn mm
 nn----------nn mm
 nn--nnnnnnn--nn mm
 nn--nn**mm--mmmmmm
 nn--nnnnnn--nn
 nn----------nn
 nnnnnn**nnnnnn
 ss
 **ssssssssssssssssssssssss-Vss
Advantages of Doughnut-Transistor Inverter Layout

• Drain area does not increase in size much
 – Drain capacitance does not increase much
• Transistor gain almost quadrupled
• Also called “round transistor” connection
“Line of Diffusion” Layout

- Single row of p-transistors above single row of n-transistors
- Aligned at common gate connections
- Transistors form line of diffusion intersected by polysilicon gate connections
- All complementary gates can be designed this way
- Most simple gates can be designed without a break in the diffusion
Complex Gate Layout

• Convert circuit to two graphs
 1. p-transistor pull-up network
 2. n-transistor pull-down network
• Each graphs is the dual of the other
• Vertices = source-drain connections
• Edges = transistors that connect vertices
 – Labeled with gate signal name for that transistor
Euler Path

• If two edges are adjacent in one of the graphs
 – They share a common source-drain connection
 – They can be connected by abutment
• If there is an Euler path
 – if there is a sequence of edges
 • containing all edges in the p-graph and the n-graph
 • that have identical labeling
 – then the gate can be designed with no breaks
“Line of Diffusion”
Layout Algorithm

1. Find all Euler paths that cover the n-graph and the p-graph
2. Find an Euler path for the n-graph and an Euler path for the p-graph that have identical labeling
 • labeling = ordering of the gate labels on each vertex
3. If not found, break the gate in the minimum number of places to achieve step 2 by separate Euler paths
Stacked Transistor Layout

- Input signal applied to gates of multiple transistors
- Transistors stacked on appropriate gate signal
- Used for cascaded gates
 - Xnor
- Variation in distance between power lines makes standard cell layout more difficult
 - C.f. “line of diffusion” layout
Xnor Logic

\[z = a \text{ Xnor } b \]
Nand portion of "Line of Diffusion" Xnor Layout

ddd-Vdd
dd
pp--pppp--pp** -- "Line of Diffusion" --
 aa mm bb
 aa mm bb
 aa mm bb
 aa mm bb
 aa mmmbbmmmmmm-- A Nand B
 aa bb mm
nn--nnnnnn--nn -- "Line of Diffusion" --
ss aa bb
ss aa bb
ss aa bb
sssaasssssssbbsss-Vss
 aa bb
 aa bb
 aa bb
A-aa B-bb
“Line of Diffusion” Xnor Layout

```
  ddddddddddddddddddddddddddddddddddddddddddd-Vdd
  dd         dd         dd
**pp--pp**pp--pp**       **pp--pp**pp--ppppppp--pp**
  aa        mm        bb        mm        cc        aa        bb        mm
  aa        mm        bb
  aa        mm        bb        mmmmccmmmmmmmaaammmmmmmbbmmmcccmm--Z
  aa        mm        bb        cc        aa        mm        bb
  aa        mmmbbbmmmmmm**cccc**aa        mm        bb
  aa        bb        mm        cc        aa        mm        bb
**nn--nnnnnn--nn**       **nn--nn**nn--nn**nn--nn**nn--nn**
  ss        aa        bb        ss        mm        aa        bb        mm
  ss        aa        bb        ss        mmmmcaammммммmbbmmmmm
  ss        aa        bb        ss        aa        bb
sssssaasssssssbbsssssssssssssssssssssssssssssssssbbssssss-Vss
  aa        bb        aa        bb
    aammmmmmbbmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm**    bb
  aa        bb        bb
A-aa       B-bbmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm**
```
Nand portion of Stacked-Transistor Xnor Layout

\[c = A \text{ Nand } B \]
Stacked-Transistor Xnor Layout

Vss | Vdd
 |
ss | dd
sss** mm** **Z** **dd**
ss nn mm pp dd
ss **ccc**--ccccccccc--cccc dd
ss mm nn mm pp cc dd
ss ** mm**** mm** mm** mm** ** ** dd
ss nn mm nn mm pp mm pp dd
B-bbbbb--bbbbbb--bbbbbbbbbbbbbb--bbbbbb-- dd
ss nn mm nn mm pp mm pp dd
ss nn mm **mmm** pp mmmm** dd
ss nn mm nn pp pp dd
A-aaaaaa--aaaaaa--aaaaaaaaaaaaaa--aaaaaa-- dd
ss nn mm nn pp pp dd
ssss** mm** **dd** **dd**