CMOS Digital System Design

MOS Transistor DC Operation
Threshold Voltage V_t

- $V_{gs} < V_t$: nMOS channel is cut off
- $V_t < V_{gs}$: nMOS channel conducts
- $V_{gs} < V_t$: pMOS channel conducts
- $V_t < V_{gs}$: pMOS channel is cut off
Enhancement Mode Transistors
Depletion Mode Transistors

• Enhancement mode:
 channel is cut off when $V_{gs} = 0$

• Depletion mode:
 channel conducts when $V_{gs} = 0$

• Most CMOS ICs use enhancement-mode transistors.
n-MOS Channel Layers, Page 1

• When $V_{gs} = 0$, drain-to-substrate is reverse-biased pn junction.

• When $V_{gs} > 0$, positive electric field in channel under gate:
 – repels holes
 – attracts electrons
n-MOS Channel Layers, Page 2

• When $V_{gs} \ll V_t$:
 – Mobile positive holes in p-type channel in substrate are evenly distributed.
 – Called accumulation layer

• When $V_t < V_{gs}$:
 – Holes are repelled, causing a depletion region under the gate.
 – Called depletion layer
n-MOS Channel Layers, Page 3

• When $V_t \ll V_{gs}$:
 – Electrons are attracted, causing a conductive layer under the gate.
 – Called inversion layer
n-MOS Operating Regions, Page 1

• When $V_{ds} = 0$:
 – Depletion and inversion layers uniform depth along length of channel

• When $V_{ds} > 0$:
 – Depletion and inversion layers same depth at source end of channel as for $V_{ds} = 0$
 – Inversion layer tapers off linearly toward drain end
n-MOS Operating Regions, Page 2

• When $V_{ds} < V_{gs} - V_{t}$:
 – Inversion layer becomes deeper as V_{gs} increases
 – I_{ds} depends on both V_{gs} and V_{ds}.
 – Called linear region.
 – Also called resistive region.
 – Also called nonsaturated region.
 – Also called unsaturated region.
• When $V_{ds} > V_{gs} - V_t$:
 – $V_{gd} < V_t$.
 – Inversion layer pinched-off: no longer reaches drain from source end of channel
 – Electrons instead injected into depletion layer, then accelerated toward drain
 – I_{ds} depends only on V_{gs}, independent of V_{ds}.
 – Called saturated region
Body Effect

- When have series-connected nMOS devices, only the bottom one has source connected to GND.
- Others have $V_{sb} = (V_{source} - V_{substrate}) > 0$
- For those, have greater gate-channel voltage difference
- Increase in V_t.
Cutoff Region DC Equation

- For $V_{gs} \leq V_t$:
- $I_{ds} = 0$
Nonsaturation Region DC Equation

• For $0 < V_{ds} < V_{gs} - V_t$:

 $$I_{ds} = \text{Beta}((V_{gs} - V_t)V_{ds} - V_{ds}**2 / 2)$$

• Beta = MOS transistor gain factor
Saturation Region DC Equation

- For $0 < V_{gs} - V_t < V_{ds}$:

 $I_{ds} = \frac{\text{Beta}(V_{gs} - V_t)^2}{2}$

- Beta = MOS transistor gain factor

 $= \left(\frac{(\mu)(\epsilon)}{t_{ox}} \right)(W/L)$

- mu = channel carrier mobility

- epsilon = gate insulator permittivity (SiO$_2$)

- t_{ox} = gate insulator thickness

- W/L = channel dimensions
LOW Noise Margin

- V_{IL} = LOW input voltage
- NM_L = LOW noise margin
- Unity gain point, slope = -1
 - V_{IL} = 2.3 volts
 - NM_L = 2.3 volts
HIGH Noise Margin

- $V_{IH} = $ HIGH input voltage
- $NM_H = $ HIGH noise margin
- Unity gain point, slope = -1
 - $V_{IH} = 3.3$ volts
 - $NM_H = 1.7$ volts
Differential Amplifier, Page 1

• Pair of nMOS transistors, each with a pull-up resistor
• Sources connected through constant-current source to ground
Differential Amplifier, Page 2

- If V_{in1} and V_{in2} change equally from $V_{\text{quiescent}}$, V_{out1} and V_{out2} stay the same.

- If only V_{in1} changes:
 - current changes one way in resistor 1 and the other way in resistor 2
 - So V_{out1} changes one way and V_{out2} changes the other.
Differential Amplifier, Page 3

- Common Mode Gain low
- Differential Gain high
- CMRR = Common Mode Rejection Ratio
 = Differential Gain/Common Mode Gain
- Good for rejecting common mode noise on input pins
- Used in RAM sense amplifiers
Current Mirror

- Pair of nMOS transistors with gates tied together
- Tie drain of side device to its gate to put it in saturation
- Feed constant current in side transistor
- Identical current will flow in other transistor, since they are in saturation and $V_{gs1} = V_{gs2}$.
Tri-State Driver

- Inverter followed by a pass gate
- For same size n- and p-devices, half the speed of inverter alone
- Can omit connection between inverter devices
- Used in bus drivers and latches
- Can be drawn as one gate
- (“Tri-State” is a registered trademark of National Semiconductor Corporation.)
Junctions and Diodes

• At pn junction, junction diode formed
• At metal-semiconductor junction, creates either:
 – Ohmic contact, or
 – Schottky diode (used extensively for high-frequency, low-noise mixer and switching circuits).
 – Only ohmic in most CMOS processes
Diode DC Equation

\[I = A_d I_s (\exp(qV/kmt) - 1), \]

where:

- \(I \) = current in a diode
- \(A_d \) = area of the diode
- \(I_s \) = the saturation current/unit area
- \(q \) = the charge of an electron
- \(k \) = Boltzmann's constant
- \(t \) = temperature
- \(m \) = approx. 2.0 for \(pn \)-junction diodes, and
 - \(m \) = approx. 1.2 for Schottky diodes
BiCMOS Drivers

• With extra processing steps added to a CMOS process, can build useful NPN transistors
• NPN has high current gain
• Can improve output drive of CMOS inverter