1 About SimpleScalar

This document is a very brief introduction to the simplescalar tools as they are installed locally. Be sure to read through the user’s guide, which contains much more detailed information about SimpleScalar.

- The original SimpleScalar files are available at http://www.simplescalar.com/
- SimpleScalar is now installed locally in:
 - /cse/classes/cmpe202/SimpleScalar/ for Solaris
 - /cse/classes/cmpe202/SimpleScalar-linux/ for Linux
- Code has been tested (to some extent) on sundance, emperor, & fyglia
- Let me know about problems running it (stuart@soe)
- There is now a class newsgroup for simplescalar questions and answers: ucsc.class.cmpe202. Please ask questions and share ideas there!
- Important subdirectories of /cse/classes/cmpe202/SimpleScalar:
 - simplesim-2.0 – code for several simulators. This is the code you will modify for your own purposes!
 - bin – binaries, including the ssbig-na-sstrix-gcc compiler, which will compile C code to PISA (portable instruction set architecture) instructions which run on the simulator programs.
 * To compile your code into files that the SimpleScalar simulators can execute:
 % /cse/classes/cmpe202/SimpleScalar/bin/ssbig-na-sstrix-gcc myprog.c
 * Please note: if running on a little-endian machine (i.e. Intel), use the versions of files with little in the name rather than big, e.g. ssslittle-na-sstrix vs. ssbig-na-sstrix.
 - instructbench – precompiled “instructional benchmarks” – just as useful as the SPEC benchmarks for testing your code.
 - f2c – Fortran-to-C translator, useful if you want to compile some f77 programs to run on the simulators.
2 Installation

- Avoid installing anything if you can avoid it; small differences between machines can cause problems.
- My suggestion: install/compile only the simplesim-2.0 directory in your own SOE disk space, as follows

 `% cd
 `% cp /cse/classes/cmpe202/SimpleScalar/simplesim-2.0 ss
 # linux: /cse/classes/cmpe202/SimpleScalar-linux/simplesim-2.0
 `% cd ss
 `% make # it's already made, but you'll want to
 # re-’make’' after you make changes
 `% sim-outorder tests/bin.big/test-math
 # linux x86: sim-outorder tests/bin.little/test-math

- Use any other files, such as the gcc PISA compiler, from the class directories (probably a good idea to add the SimpleScalar/bin directory to your path)

3 Running a simulator

- The simulators are the programs in the simplescalar-2.0 directory starting with “sim-”, like sim-fast and sim-outorder. Running one of the simulators without any command-line parameters gives you important information on the simulator and how to use it.
- Several different simulators exist; the most complex, and the one you’ll be modifying, is sim-outorder, the least complex is probably sim-safe.
- Suggestion: start by figuring out generally how sim-safe works, move on to sim-outorder later.

Example of how to run the sim-outorder simulator from your local simplescalar-2.0 (or “ss”) directory:

 `% ln -s /cse/classes/cmpe202/SimpleScalar/instructbench ib
 `% more ib/README
 % sim-outorder ib/anagram.pisa-big ib/words < ib/anagram.in > OUT
Note: these “instructbench” programs are nice, but they only exist for running on a big-endian architecture (e.g. sundance & moondance). You can also compile your own programs to run (with the appropriate SimpleScalar version of gcc). You may also compile the SPEC benchmarks from the /cse/classes/cmpe202/SPEC* directories; be warned, this may require some work.

4 What next?

- Experiment with other programs, other simulators, simulator options...
- **Look at the documentation**, it can be very helpful:
 - User’s Guide (v2)
 - Hacker’s Guide & Tutorial
 - .h interface files