Practical Computer Security

What every grad student should know about computer security

Ethan L. Miller
elm@cs.ucsc.edu

Who needs computer security?

- We trust computers: machines don’t lie
- People can subvert computers in many ways
 - Obtain data they shouldn’t be able to get
 - Plant false information
 - Deny service: prevent others from using the system
- Vigilance is key!
 - Prevention is much easier than fixing the problem
 - Knowing the risks is crucial for prevention
- A little prevention goes a long way....
Passwords

- Passwords are the way you show the computer who you are
 - Anyone with your password can pretend they’re you
- Take precautions
 - Pick a “good” password
 - Easy to remember
 - Unrelated to any personal information
 - Not in the dictionary!
 - Don’t share your password with other people (even unintentionally!)
 - Don’t leave your password lying around
 - Be careful typing your password with others looking over your shoulder

Good and bad passwords

- Bad passwords
 - Szczurowska (yes, it’s hard to spell, but it’s your wife’s last name!)
 - SantaCruz (pretty obvious thing to check)
 - marbles (there are a limited # of words in the dictionary)
 - Jeremiah (same goes for names)
 - Pxq (hard to guess, but only 3 letters long)

- Mediocre passwords
 - b00tbL0ck (substituting 0’s for O’s, weird capitalization)
 - &soItGoes
 - #cheDDar (using symbols for words)

- Better passwords: use the initials of a phrase
 - IwIwaOMw (I wish I were an Oscar Meyer wiener)
 - SWE2:AotC (?)
 - GHWB:Rml-nnt (?)

- Don’t use any of these specific passwords!
 - The slides may be on the Web, making it easy to guess
 - Pick your own using these heuristics
Logging in

- Don’t use telnet or rlogin!
 - Password sent unencrypted
 - Entire session visible over the network
 - Most SoE machines require encrypted connections, but outside computers (unix.ic!) may not require it
- Instead, use secure shell (ssh)
 - Available on cse, unix.ic and other Unix machines
 - Free clients available for Windows, Mac
- Secure shell provides
 - End-to-end encryption: no way to eavesdrop
 - Password sent encrypted
 - Ability to encrypt other network connections (more about that later…)

Why are networks insecure?

- Any information sent over the network may be visible to everyone on the network
 - Standard programs for “sniffing” network packets
 - Standard programs for sifting through those packets
 - Wireless networks only make matters worse
- If you don’t want someone to see it, use encryption
 - Secure shell
 - Secure HTTP (https)
 - Secure sockets layer (SSL)
- Particularly true for shells, copying files, mail
Verifying the other end

- SSL & SSH encrypt traffic between your computer and the other end
 - This is *always* the case
 - Nobody can read the traffic in transit
- How do you know the other end is *really* who it claims to be?
- Solution: present a *certificate* to set up SSL or SSH
- Two ways of verifying certificate’s authenticity
 - Certificate is *signed* by someone you trust (SSL)
 - Certificate *fingerprint* is verified by the user (SSH)
- Our SSL certificates aren’t signed properly!
 - Find the fingerprint and remember it
 - First use SSL within SoE (low chance of attack) and have your computer remember the certificate

Copying files

- Avoid using ftp
 - OK to do anonymous ftp (no login involved)
 - Password for ftp sent in the clear!
- Use scp (part of ssh) instead
 - scp file1 file2 unix.ic:
 - Copies file1 and file2 to unix.ic using same account on both
 - scp file1 file2 elm@unix.ic:files/bar
 - Copies file1 and file2 to unix.ic using elm account on unix.ic, and placing the files into files/bar
- Ssh/scp clients exist for Unix, Mac, Windows
 - http://www.ece.nwu.edu/~mack23/ssh-clients.html
 - Google search for ssh clients
- Alternative: secure FTP (sftp)
 - Sundance has an sftp server
Securely reading your email

- Read email using pine over ssh
 - Just as secure as anything else over ssh
 - Often limited to text-only
- Use POP or IMAP for email
 - Send password encrypted (APOP, etc.)—mail itself transferred in the clear
 - Use IMAP over SSL (supported by SoE)—all information is encrypted (password & data)
- Security is useful for two reasons
 - Nobody can read your passwords & mail
 - Nobody can insert fake messages…

Securely sending email

- Mail servers may reject mail if they don’t trust its source
 - Reduce spam
- No problem if sending mail from SoE network
- Sending mail from off-campus
 - Use your ISP’s mail server (ask them for instructions)
 - Use SoE’s server after authenticating yourself
 - **IMPORTANT**: use SSL to make sure your password isn’t sent in the clear!
 - Most PC / Mac programs have support for this
Email isn’t always what it seems

- Email relies on trust
 - Servers will accept mail from anywhere
 - There’s no authentication done on the “From” field!
 - Email can be modified by anyone *en route* from sender to receiver
- Spoofing email is (very) easy!
 - Telnet to port 25 on a mail server
 - Type the appropriate commands to it
 - Provide the requested (fake) data
 - Send the mail off
- Spoofs are undetectable if you’re logged into a machine that the spoofed sender would use!
 - Anyone with a CATS account can spoof anyone else with a CATS account!

Authenticating email

- Use cryptographic mechanisms if it’s important
 - PGP (Pretty Good Privacy) allows you to encrypt or sign email
 - Signed email is very difficult to forge, but is readable by anyone
 - Encrypted email is only readable by the recipient
- If it seems strange, ask in person or by email
 - Extremely difficult to forge face-to-face contact!
 - Email exchange is harder to spoof than a single message
- Consider whether someone could gain by forging email
 - Fake message that office hours are cancelled does no good
 - Fake message that project deadline has been extended…
Security at home (Linux & otherwise)

- Many people now have Linux boxes at home
 - Flexible, fast, cheap
 - Really easy to break into!
- Security with a Linux box is much better if you
 - Turn off all Internet daemons except ssh
 - Do you really need ftp, http, etc?
 - Major security holes if misconfigured
 - Check system logs on a regular basis
 - Use ssh to “tunnel” X Windows or VNC connections to other hosts
 - Encrypts all traffic, including passwords
 - Makes it much more difficult for an intruder to watch what you’re doing
- Better approach: buy a hardware firewall
- Threat comes primarily from outside UCSC!

Protecting your files & data

- Previous techniques protect data “in transit”
- Also necessary to protect data while it’s sitting on the computer
 - These “attacks” are primarily from UCSC insiders
- Use Unix permissions and/or ACLs to protect your data
- Don’t run untrusted programs in your account
 - This includes precompiled student binaries!
- Use a virus checker on your PC/Mac
 - Available free for UCSC students, faculty, staff
 - http://www2.ucsc.edu/cats/sc/software/
Using Unix permissions

- Three permission bits (r, w, x)
- Three sets of people (user, group, other)
 - W should be enabled only for user
 - R should be enabled for whoever’s going to read the file
 - Only enable x for executable files
- Directories have similar bits
 - R allows people to list the directory
 - X allows people to access a file if they know the name
 - Very useful for public directories such as Web stuff…
 - Disable w for all but user
- Default policy should be to disable access for everyone but user
 - Particularly true for stuff you’re doing as a TA

Setting Unix permissions

- View current permissions with “ls -l”
- Set permissions with chmod
 - `chmod g-w` removes write permission from the group
 - `chmod g+r` adds read permission for group & others
 - `chmod g+rx` adds read permission and execute permission for group & others
 - Execute only given if user can already execute the file
- Use the -R flag to set permissions recursively
 - Be very careful with this option!
 - Useful for making a directory tree accessible
Permissions on IC systems

- IC systems use AFS
- AFS supports access control lists (ACLs)
 - Grant permissions to specific users or groups
 - Ordinary users can create permission groups
- Permissions in AFS cover directories (not individual files)
 - All files in the directory have the same permissions
 - AFS permissions override Unix permissions
- Read the man pages for the `fs` command

Dealing with students’ programs

- If possible, have the student log in
 - Do `ssh student@unix.ic` and have the student type in her password
 - Don’t run the programs logged in as yourself!
 - Don’t let students see your password
- Compile the files yourself when grading
 - Precompiled binaries may have trojan horses
- If possible, look over the code before running it in your account
Things to remember

- An ounce of prevention is worth a pound of cure
 - Cleaning up from intrusions is very difficult
 - Doing things securely isn’t tough once you’ve got security set up
- Don’t send your password in the clear
 - Use secure shell (ssh) instead of rlogin, telnet, ftp
 - Use secure email (over ssh or SSL)
- Pick a good password
 - None of these techniques are any good if someone can easily guess your password!
- Take care to protect your files