Algorithm 1 - General
- works in case with no negative loop!!

1. \(\forall u : d(u) = \begin{cases} 0 & \text{if } u = v \\ \infty & \text{otherwise} \end{cases} \)

2. Repeat (improvement step)
 - pick \(u \in V \)
 - let \(d(u) = BF(u) \)

Repeat until nothing can change

* Theorem & Proof

- No negative loops -

1. \(\forall u \), throughout the algorithm,
 \(\tilde{d}(u) \geq d(u) \)
 \(\tilde{d}(u) = BF(u) \)

 \(\tilde{d}(r_1) + w_1 \leq \tilde{d}(r_2) + w_2 \)

 We know \(d(r_1) \leq \tilde{d}(r_1) \) by induction hypothesis

 \(d(w) \leq w(r_i,u) + d(r_1) \) triangular inequality

 \(d(w) \leq w(r_i,u) + \tilde{d}(r_1) \) first step of improvement

2. The algorithm halts.
 a) There is a SPT, \(v \rightarrow u \) has no loops
 b) Shortest path with out loop.