Shortest Paths

1. **Single Source** - given \(v \), compute \(d(v,u) \) for all \(u \) vertices.
2. **All pairs** - for all \(u, v \), compute \(\omega d(v,u) \)
3. **Fixed Endpoint** - simplest algorithm!
 - given \(v, u \) find \(d(v,u) \)

Single Source

Suppose you want to run algorithm from \(u \) to every vertex.

\[
\text{BF}(u) = d(v,u)
\]

Bellman-Ford Algorithm

\[
\text{BF}(u) = \min \left\{ d(u), d(r) + \omega(r,u) \mid (r,u) \in E \right\}
\]

\[
\text{BF}(u) = d(u) \cap \min\left\{ d(r) + \omega(r,u) \right\}
\]

\[
d(u) = d(r_i) + 1
\]

\[
d(u) = \min \left\{ d(u), d(r_i) - 1 \right\}
\]

This improves the estimate!