Menger’s Theorems

Given \(u, v \in V(G), u \neq v \).

A subset \(S \subseteq V(G) - \{u, v\} \) is a \(u-v \) separating set
if \(u \) and \(v \) are not connected in \(G - S \).

\(u-v \) separating sets??

\{a,b\} ?
\{a,d,e\} ?
\{b,d,f\} ?

\begin{center}
\includegraphics[width=0.5\textwidth]{mengers_theorems.png}
\end{center}

Thm 8.3

\(S \) is a \(u-v \) separating set of vertices \(\text{every } u-v \) path
has an internal vertex in \(S \).

\(F \) is a \(u-v \) separating set of edges \(\text{every } u-v \) path
contains an edge in \(F \).

Proof: \(\text{ } \)

If \(S \) is a \(u-v \) separating set then \(u \) and \(v \) are not
connected in \(G-S \).

There is no \(u-v \) path in \(G-S \).

Any \(u-v \) path in \(G \) must have a vertex in \(S \).

\(u \) and \(v \) are not in \(S \), so every \(u-v \) path has
an internal vertex in \(S \).

\begin{center}
\includegraphics[width=0.5\textwidth]{mengers_theorems.png}
\end{center}

Proof: \(\text{ } \) (continued)

If \(F \) is a \(u-v \) separating set then \(u \) and \(v \) are not
connected in \(G-F \).

There is no \(u-v \) path in \(G-F \).

Any \(u-v \) path in \(G \) must have an edge in \(F \).

If every \(u-v \) path has an internal vertex
(edge) in \(S(F) \), then there is no \(u-v \) path in
\(G-S \) (\(G-F \)).

\(u \) and \(v \) are not connected in \(G-S \) (\(G-F \)).

\(S(F) \) is a \(u-v \) separating set of vertices (edges). \(\square \)
Menger’s Thm 8.4
Assume \(u, v \in V(G) \), \(u \neq v \) and \((u,v) \in E(G) \).
The maximum number of internally disjoint \(u \cdot v \) paths in \(G \) is equal to the minimum number of vertices in a \(u \cdot v \) separating set.

Corollary (Thm 8.5)
A simple graph is \(n \)-connected every pair of distinct vertices have \(n \) internally disjoint paths.

\(n \)-connected
- either \(G \cong K_{n+1} \) or no cut set of size \(< n \)
- no pair of vertices has a separating set of size \(< n \)
- every pair non-adjacent vertices has at least \(n \) internally disjoint paths.

Proof: (continued)
To show \(p \geq k \), given a graph \(G \) and two non-adjacent vertices, \(u \) and \(v \), construct the network \(N=(D,c(),s,t) \) as follows:

For all vertices \(w \neq u,v \)

\[
+m = 2 \cdot |V|
\]

\[
+m = 2 \cdot |V|
\]
Proof: (continued)

Let d be the value of a maximum flow f for N.

Claim: $p \geq d \geq k$.

Follow a unit of flow from s to t in N to obtain a directed walk W of N.

No vertex can be repeated since there is only one arc leaving each W_{in} and it has capacity 1.

W defines a u to v path in G.

Remove the unit of flow from f for all arcs in W and remove the internal arcs for all vertices in W.

Repeat until the value of the flow is 0.

Proof: (continued)

The result is d internally disjoint u-v paths in G since each internal arc can be used by only 1 unit of flow allowing each vertex of $V \setminus \{u,v\}$ to appear in only one path.

So $p \geq d$.

Let X be a minimum cut of N.

$d = c(X, \overline{X}) \leq |V| - 2$, since removing all internal arcs disconnects t from s.

So $A(X, \overline{X})$ contains only arcs of capacity 1.
Proof: (continued)

Let $S = \{ w \mid w_x \in X, \text{ and } w_{out} \in X \}$

S is a u-v separating set of size d since any u-v path in $G-S$ would correspond to an s-t path in N without any arcs in $A(X, X)$.

d = c(X, X) = |S| \geq k.

So $p \geq d \geq k \geq p$. \qed

Example 1 $S = \{a, c\}$, u-v separating set of size 2

Menger's Thm 8.5
Assume $u, v \in V(G)$, $u \neq v$.

The maximum number of edge disjoint u-v paths in G is equal to the minimum number of edges in a u-v separating set.

Proof:
Let $p =$ maximum number of edge disjoint u-v paths in G.
Let $k =$ the minimum number of edges in a u-v separating set.

Then $p \leq k$ since at least one edge from each of the p edge disjoint paths must be removed to disconnected u and v.

Example 2 $S' = \{b, c\}$, u-v separating set of size 2
To show $p \geq k$, given a graph G and two distinct vertices, u and v, construct the network $N=(D,c(),s,t)$ as follows:

For all vertices $w \neq u,v$

Proof: (continued)

Example

Let d be the value of a maximum flow f for N.

Claim: $p \geq d \geq k$.

For any pair of adjacent vertices, a,b if there is flow from both a to b and b to a, remove it till there is flow in one direction only.
Proof: (continued)

Follow a unit of flow from \(s \) to \(t \) in \(N \) to obtain a directed walk \(W \) of \(N \).

No arc can be repeated since each arc has capacity 1.

\(W \) defines a \(u \) to \(v \) trail in \(G \) since no edge can be repeated (anti-parallel arcs cannot occur).

Remove the unit of flow from \(f \) for all arcs in \(W \) and remove the arcs for all edges in \(W \).

Repeat until the value of the flow is 0.

The result is \(d \) edge disjoint \(u-v \) paths in \(G \).

Proof: (continued)

So \(p \geq d \).

Let \(X \) be a minimum cut of \(N \). \(d = c(X, \overline{X}) \)

Let \(F = \{ (x, y) \mid (x, y) \in A(X, \overline{X}) \} \)

\(F \) is a \(u-v \) separating set of size \(d \) since any \(u-v \) path in \(G-F \) would correspond to an \(s-t \) path in \(N \) without any arcs in \(A(X, \overline{X}) \).

\(d = c(X, \overline{X}) = |F| \geq k. \)

So \(p \geq d \geq k \geq p \). \(\square \)

Example

\(S=\{(u,c),(a,b)\} \), \(u-v \) separating set of size 2

Equivalent Theorems for Directed Graphs

Assume \(u,v \in V(G) \), \(u \neq v \) and \((u,v) \in A(D) \).

The maximum number of internally disjoint \(u-v \) paths in \(D \) is equal to the minimum number of vertices in a \(u-v \) separating set.

Assume \(u,v \in V(G) \), \(u \neq v \).

The maximum number of arc disjoint \(u-v \) paths in \(D \) is equal to the minimum number of arcs in a \(u-v \) separating set.