Directed Graphs

A directed graph \(D = (V,A) \) consists of
1. a finite non-empty set of vertices \(V = V(D) \)
2. An arc set, \(A = A(G) \), where each arc in \(A \) is assigned an **ordered** pair of vertices, \(a = (u,v) \).

If \(a = (u,v) \) then \(a \) joins \(u \) to \(v \),
\(u \) is the origin, tail, initial vertex of \(a \)
\(v \) is the terminus, head, terminal vertex of \(a \).

Example \(D = (V,A) \)
\[V = \{a,b,c,d,e\} \]
\[A = \{a_1,a_2,a_3,a_4,a_5,a_6\} \]
\[a_1 = (a,b), \quad a_2 = (b,c), \quad a_3 = (c,d), \quad a_4 = (d,e), \quad a_5 = (e,a) \]

Two arcs \(a = (u,v) \) and \(a' = (x,y) \)
are parallel if \(u = x \) and \(v = y \).
Two arcs \(a = (u,v) \) and \(a' = (x,y) \)
are anti-parallel if \(u = y \) and \(v = x \).

An arc is a **loop** if the initial and terminal vertices are the same.

A directed graph is **simple** if it has no loops nor parallel arcs.

The **underlying undirected graph** of a directed graph is the graph obtained by removing the directions of the arcs.

\[D = (V,A) \]
\[G = (V,E) \]

Is the underlying undirected graph of a simple directed graph simple?

Adjacency Matrix \(A(D) \)
An \(n \times n \) matrix where \(n = \# \text{vertices} \)
\[a_{ij} = \# \text{arcs from } v_i \text{ to } v_j \]

\[
A(D) = \begin{bmatrix}
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0
\end{bmatrix}
\]

No longer always symmetric
For simple graphs, all entries are 0 or 1 and diagonal is 0.
Isomorphisms

\(D_1 \cong D_2 \) are isomorphic

If there exist 1-1 onto functions
\[f_i : V_i \to V_2 \text{ and } f_i : A_i \to A_2, \]
such that \(\forall a_i \in E_i \)
if \(a_i = (u_i, v_i) \) and \(f_i(a_i) = a_2 \), then \(a_2 = (f_i(u_i), f_i(v_i)) \).

The \textit{indegree} of \(v = id(v) \) is the \# of arcs with \(v \) as the terminal vertex.

The \textit{outdegree} of \(v = od(v) \) is the \# of arcs with \(v \) as the initial vertex.

Handshaking Lemma for Directed Graphs

In any directed graph
\[\sum_{v \in V} id(v) = \sum_{v \in V} od(v) = |A| \]
Proof: Each arc contributes 1 to each sum.

Directed Paths and Cycles

Directed walks, trails, paths and cycles are defined in the same manner except that the arc directions must be respected.

For example, \(W \) is a directed walk if,
\[W = v_1 a_1 v_2 a_2 v_3 a_3 \ldots a_n v_n \] where each \(a_i = (v_{i-1}, v_i) \).
\(v_1 \) is the origin of \(W \) \(v_n \) is the terminus (destination) of \(W \)
\(D \) is acyclic if it contains no directed cycles.
Every \(x-y \) directed walk contains as a subsequence an \(x-y \) directed path.

\textbf{Proof}: exactly the same as the undirected version.

Connectivity

\(u \) is \textit{reachable} from \(v \), in \(D \) if there is a \(v-u \) walk (path) in \(D \).
\(u \) and \(v \) are \textit{strongly connected} if both are reachable from the other.

Strong connectivity is an \textit{equivalence} relation on vertices of a directed graph.
1. Reflexive: \(u \) is strongly connected to \(u \) by trivial paths.
2. Symmetric: by definition of strong connectivity
3. Transitive: A \(u-v \) walk can be concatenated with a \(v-z \) walk
to obtain a \(u-z \) walk and a \(z-v \) walk can be concatenated with a \(v-u \) walk to obtain a \(v-u \) walk.

The vertices of a directed graph can be divided into equivalence classes called \textit{strongly connected components}.
Connectivity

D is weakly connected if its underlying undirected graph is connected.
D is unilaterally connected if for every pair of vertices at least one is reachable from the other.
D is strongly connected if every pair of vertices are strongly connected.

Types of Arcs

In a simple graph, $a=(u,v)$ is a

- Tree arc if $p[v]=u$
- Cross arc from u to v have $l[u] < l[v] - 1$
- Back arc if u is a proper ancestor of v
- Forward arc if u is a descendant of v but not its child.
BFS Trees

No forward arcs for a BFS tree if the graph is simple.

Cross arcs from u to v have $|d(u)| - |v| - 1$