CMPE 151: Network Administration

Servers
Announcements

- Unix shell+emacs tutorial.
Basic Servers

- Telnet/Finger
- FTP
- Web
- SSH
- NNTP

Let’s look at the underlying protocols.
Client-Server Model

CLIENT

Request

Response

SERVER
Client-Server Model

CLIENTS

SERVERS

Spring 2004
Client-Server Model
Telnet

Spring 2004
Telnet

- Remote terminal protocol.
- Allows users to login remotely.
Telnet

User’s machine

Telnet client
OS

TCP connection over Internet

Telnet server
OS
Telnet basic operation

- When user invokes telnet, telnet client on user machine establishes TCP connection to specified server.
- TCP connection established; user’s keystrokes sent to remote machine.
- Telnet server sends back response, echoed on user’s terminal.
- Telnet server can accept multiple concurrent connections.
Handling heterogeneity

- Telnet protocol specifies standard data exchange: *network virtual terminal* (NVT).
- Telnet client and server make translation.
Finger

Spring 2004
Finger

- Returns information on users currently logged on to a specified host.
- Finger server is often not running.
 - Implementation error in early version was used as the entry point for the “Internet worm” (1988).
 - Reveals private information.
Finger (cont’d)

- Also uses TCP.
- Client opens TCP connection to finger server.
- Client sends query.
- Server processes query, sends reply back, and closes connection.
- If finger server not running, client receives error message (e.g., “Connection refused”).
File Transfer
File Transfer

- “On-line” versus “off-line” access.
- Underlying transport protocol?
FTP Operation

Client

Server

TCP connection

Spring 2004
Port Assignment

- FTP server listens on well-known port (21); data transfer uses port 20.
- On client side, uses any unused port; client control process communicates that port number to server.
- Server process initiates data transfer connection.
Anonymous FTP

- Allows access to public files.
- No need to authenticate user.
- Access restricted to publicly available files (e.g., in /usr/ftp).
The Server Side

- Web site has Web server running that answers requests for pages locally served.
 - Web server listens to port 80 for requests.
 - When request from client arrives, connection is set up.
 - Server replies.
 - Connection released.
Example

- User clicked on
 www.w3.org/hypertext/WWW/TheProject.html.
Example (cont’d)

- Browser asks DNS to resolve www.w3.org.
- DNS replies with 18.23.0.23.
- Browser sets up connection to 18.23.0.23 port 80.
- Browser sends GET /hypertext/WWW/TheProject.html.
- www.w3.org server sends TheProject.html file.
- Connection released.
- Browser displays TheProject.html, fetching and displaying all embedded objects (images, etc).
Observations

- Many browsers display status information at bottom of the screen.
- For each embedded object (in-line image like icon, picture, etc), browser establishes new connection.
 - Performance hit.
 - Revisions to protocol (HTTP) address this.
More Observations…

- Server’s response specifies object type (using MIME) followed by object body.
- For example:
 - Content-Type: Image/GIF
 - Content-Type: Text/html
MIME

- Multipurpose Internet Mail Extensions (RFC 1521).
- Before MIME, objects (at the time e-mail messages) consisted of text only.
 - Only need to specify headers (subject, date, reply-to, etc).
 - Mainly due to Web, that no longer works: need to specify and structure object content.
MIME (cont’d)

- Adds structure to message body and defines encoding rules for non-textual messages.
- 5 new message (MIME) headers:
 - MIME version.
 - Content description.
 - Content id.
 - Content encoding.
 - Content type.
HTTP

- HyperText Transfer Protocol.
- Each interaction: client’s ASCII request followed by MIME-like response.
- Use TCP as underlying transport protocol (although not required by standard).
- Several co-existing versions of HTTP.
HTTP Operations

- Commands (method) to be executed on object (Web page).

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GET</td>
<td>Request to read Web page</td>
</tr>
<tr>
<td>HEAD</td>
<td>Request to read Web page’s header</td>
</tr>
<tr>
<td>PUT</td>
<td>Request to store Web page</td>
</tr>
<tr>
<td>POST</td>
<td>Append to specified object (e.g., Web page)</td>
</tr>
<tr>
<td>DELETE</td>
<td>Deletes Web page</td>
</tr>
<tr>
<td>LINK</td>
<td>Connects 2 objects</td>
</tr>
<tr>
<td>UNLINK</td>
<td>Disconnects 2 objects</td>
</tr>
</tbody>
</table>
HTTP Responses

- Every request gets response with status information.
 - Status code 200: OK.
 - Status code 400: bad request.
 - Status code 304: not modified.
Non-Persistent Connections

- Up to HTTP 1.0, separate connection for each data transfer.
 - Parallel connections.
Persistent Connections

- HTTP 1.1: persistent connections.
 - Same connection for multiple transfers.
 - Less overhead (connection management, slow start), less machine resources (buffers, connection id’s).
 - But, need to recognize beginning and end of an item (use length information).
Pipelining

- No pipelining: client issues new request only after getting response from previous request.
- Pipelining: client issues requests as soon as it finds a reference.
Proxy servers

- What are proxy servers?
 - Close to client.
 - Close to server.
Client-side proxies
Server-side proxies

- Clients
- Proxy
- Proxy
- Servers

Spring 2004
Caching

- What’s caching?
- What are its benefits?
- What are its problems?
HTTP support for caching

- Servers can control caching.
 - Cachable/non-cacheable object.
 - Cacheable at proxy.
 - Cached object expiration time.
 - Operations performed on cached copy.

- Browsers can force request to go to server.
 - Specifies maximum age not to be > 0.
Internet caches

- Peers.
- Hierarchical caches.
Uniform Resource Locator

- Way to identify objects (pages).
 - What is page called?
 - Where is it located?
 - How to access page?

- URL has 3 parts:
 - Protocol (or scheme).
 - Machine’s name/address.
 - Local name (file name).
URL

- Ability to handle other protocols.
 - HTTP, FTP, news, gopher, mail, telnet.
HyperText Markup Language

- Allows users to produce Web pages including text, graphics, pointers, etc.
- Markup language: describe how objects are to be formatted.
 - Contains explicit commands for formatting.
 - Example: and .
 - Advantages: easy to parse.
Dynamic Pages

• A dynamic document is generated by the server at each new connection.
 – That’s why sometimes, when downloading from the same URL, we obtain different pages.

• Common Gateway Interface (CGI) standard defines server-application interaction.
 • CGI programs can be as simple as adding the time or date to the page.

• Browser may supply parameters to CGI program.
 – Browser extends URL with additional parameters separated by ?
Forms

• Forms permit a web page to have blank areas in which the user must enter information.
 – Makes it possible to enter data directly.
 • Name, address, credit card info…
 – Allows information to be sent to the server directly.
Forms

- HTML 1.0: one-way exchange.
 - Enable users to get information from servers.
 - Users could not send information back.
 - Example: on-line order forms.

- HTML 2.0 allows forms.
 - INPUT, SUBMIT.
 - <FORM> and </FORM>.
CGI

- Common Gateway Interface.
- CGI scripts: programs that read input, process it, and generate output.
 - Example: after completing a form, user clicks on SUBMIT; this causes browser to invoke associated CGI script (given by URL). CGI script can generate output in the form of a HTML page that is returned to browser, which interprets and displays it.
- Commercial use of the Web.
What is a Cookie?
What is a Cookie?

• A server invokes a CGI program each time a request arrives for the associated URL.
 – The server does not maintain any history of requests.
 • But a history is useful to allow CGI program to participate in dialog (e.g., to avoid having a user answer questions repeatedly).
 – Information saved between invocations is called state information.
 – State information is kept at the client’s side!
What is a Cookie (cont’d)

- State information is passed by browser in the form of a **cookie**.
 - The cookie is kept in the client’s computer.
 - When it contacts the Web server again, the browser inserts the cookie in the request.
A More Interactive Web

- HTML used to write static Web pages.
- With CGI, some “activation” possible.
- Java makes the Web more interactive.
 - Java program is executed directly on the client’s machine.
 - Allows to add animation, sound, etc. to Web pages efficiently
 - Remote execution model.
 - Instead of buying software, installing it, etc., just click on the appropriate applet from vendor’s Web page and get applet downloaded, executed, etc.
Network News

Spring 2004
NNTP

- Network News Transfer Protocol.
- RFC 977 (1986)
- Distribution of news articles.
 - Inquire, retrieve, and post articles.
Alternative

- Mailing lists.
- Scalability issues.
- Maintenance issues.
(Usenet) News

- Client/server model.
- News server maintains news database.
- Client connects to server and reads, posts, etc. articles.
News Distribution

- News database distributed among several news servers.
- How to distribute news among servers?
- One alternative is flooding (UUCP)!

Spring 2004
NNTP

- NNTP is “pull” based.
 - Server connects to its “neighbor”.
 - Asks whether there any new newsgroups.
 - Asks whether there are any new news articles in the relevant newsgroups.
- Uses TCP.
NNTP Logical Topology
Some NNTP Commands

- **ARTICLE.**
 - Displays header and body of specified article.
- **HEAD and BODY.**
- **GROUP.**
 - Returns article numbers of first and last articles in the group.
- **IHAVE.**
 - Informs that client has articles specified.
More NNTP Commands

- LIST.
 - Returns list of valid newsgroups.

- NEWGROUPS.
 - Returns list of new groups created.

- NEWNEWS.
 - Returns list of new articles posted.

- POST.
Secure Shell (SSH)
What’s SSH?

- Secure alternative to remote access services (e.g., rlogin, telnet, etc.).
- Provides authentication and secure communication.
- ssh client and ssh server.
SSH in operation

Client authentication:

- Several methods: host-based, asymmetric keys, password-based.
- Host-based authentication: e.g., if client machine is in `/etc/hosts.equiv` or `/etc/shosts.equiv`.
- Asymmetric keys: set of allowed public/private key pairs; user selects one pair; informs server; server checks if key is allowed; replies with a “challenge”, i.e., a random number encrypted with client public key.
- Password-based authentication (all communication encrypted)
SSH operation (cont’d)

- After the authentication phase, the user can login to the machine, execute commands remotely, etc.
- SSH database keeps id information about all hosts it has ever communicated with.
- For RSA authentication, user generates public-private key pair and stores it locally; the user should then copy the public key to specific directory in the user’s home directory in the remote machine. After this, login is automatic.
DHCP

- Dynamic Host Configuration Protocol.
- Automate some network management procedures.
- RFC 2132.
What does DHCP do?

- Allows hosts to get information needed to get connected.

What info?

- IP address.
- Net masks.
- Default routes (gateways).
- DNS name servers...
DHCP overview

- Client-server.
- Evolved from BOOTP.
 - BOOTP enables diskless UNIX machines to boot off of the network.
- More info and “leases”.
DHCP operation

- Broadcasts a “Hello”-type message.
- If DHCP server on local sub-network, server responds providing temporary IP address, etc.
- If no local DHCP server, initial client “Hello” message can be relayed to DHCP servers on other subnets.
- Clients need to renew their release before it expires.
- Servers keep state about assigned addresses.