BGP

Brad Smith
Administrativia

• How are the labs going?
• This week
 – STP quiz Thursday, 5/9
• Next week
 – STP lab due Wednesday (in BE 301a!), 5/15
 – BGP quiz Thursday (remember required reading), 5/16
• Following week
 – Project status report due Tuesday, 5/21
 – BGP lab due Wednesday, 5/22
 – Multicast quiz Thursday, 5/23
• Projects due
 – Presentations last week of class and final slot (I’ll schedule with random assignments)
 • Alex Lowe, John, Jeff, Dennis, Erik, David, Jeff
 – Write-up, lab, and answer key bye last day of quarter (June 12th)
Functional Classification: IGP vs. EGP

- **An autonomous system** (AS) or **routing domain** is a region of the Internet that is administered by a single entity
 - UCSC’s network
 - IBM’s corporate network
 - AT&T’s ISP network

- Routing inside an AS
 - Focus is on performance
 - Popular protocols: RIP, OSPF
 - Called *intra-domain* or *internal gateway (IGP)* routing

- Routing between ASs
 - Focus is on policy
 - Popular protocol: BGP
 - Called *inter-domain* or *external gateway (EGP)* routing
Functional Classification: IGP vs. EGP

- An **autonomous system** (AS) or **routing domain** is a region of the Internet that is administered by a single entity
 - UCSC’s network
 - IBM’s corporate network
 - AT&T’s ISP network

- Routing inside an AS
 - Focus is on performance
 - Popular protocols: RIP, OSPF
 - Called *intra-domain* or *internal gateway (IGP)* routing

- Routing between ASs
 - Focus is on policy
 - Popular protocol: BGP
 - Called *inter-domain* or *external gateway (EGP)* routing
How ensure *correct* routes?

• Recall requirement for correctness of routing protocol
 – Loop-free
 – Desired path characteristics

• Two strategies for ensuring correctness
 – Use identical algorithm for selecting paths
 • Share minimal topology information
 • Use identical path selection algorithm at all nodes
 • Used for IGP/Intra-domain routing
 • Use link-state or distance vector protocol
 – Use custom (private) algorithm for selecting paths
 • Share full path information
 • Use policy-specific path selection algorithm at each node
 • Used for EGP/Inter-domain routing
 • Use path-vector protocol
How ensure *correct* routes?

- Recall requirement for correctness of routing protocol
 - Loop-free
 - Desired path characteristics
- Two strategies for ensuring correctness
 - Use identical algorithm for selecting paths
 - Share minimal topology information
 - Use identical path selection algorithm at all nodes
 - Used for IGP/Intra-domain routing
 - Use link-state or distance vector protocol
 - Use custom (private) algorithm for selecting paths
 - Share full path information
 - Use policy-specific path selection algorithm at each node
 - Used for EGP/Inter-domain routing
 - Use path-vector protocol
Routing Algorithms

• **Distance-Vector**
 - Vectors of destination and distance sent to neighbors
 - “Tell your neighbors about the rest of the network”
 - Destination in terms of a network prefix
 - Distance in terms of a metric: hop count, delay, bandwidth
 - Use Distributed Bellman-Ford path selection algorithm
 - Popular protocol: Routing Information Protocol (RIP)

• **Link-State**
 - Flood description of your links (link state)
 - “Tell the rest of the network about your neighbors”
 - Links described by
 - End-point routers of subnet in internet
 - Cost of subnet: delay, bandwidth
 - Use Dijkstra path selection algorithm
 - Popular protocol: Open Shortest Path First (OSPF)

• **Path-Vector**
 - Routes advertised as full-paths
 - Paths described by sequence of ASs
 - Popular protocol is Border Gateway Routing Protocol (BGP)
Routing Algorithms

• **Distance-Vector**
 - Vectors of destination and distance sent to neighbors
 • “Tell your neighbors about the rest of the network”
 - Destination in terms of a network prefix
 - Distance in terms of a metric: hop count, delay, bandwidth
 - Use Distributed Bellman-Ford path selection algorithm
 - Popular protocol: Routing Information Protocol (RIP)

• **Link-State**
 - Flood description of your links (link state)
 • “Tell the rest of the network about your neighbors”
 - Links described by
 • End-point routers of subnet in internet
 • Cost of subnet: delay, bandwidth
 - Use Dijkstra path selection algorithm
 - Popular protocol: Open Shortest Path First (OSPF)

• **Path-Vector**
 - Routes advertised as full-paths
 - Paths described by sequence of ASs
 - Popular protocol is Border Gateway Routing Protocol (BGP)
Policies

• Each AS selects paths based on *it’s own policies*

• Called “independent route selection”
 – See paper “Persistent route oscillations in inter-domain routing”
 – “…domains independently choose their route preference functions.”

• Policies reflect many issues
 – Business relationships
 – Traffic engineering
 – Scalability
 – Security

• *Is a very different world!*
Policies

• **Business relationships** - policy arising from economic or political relationships
 – Customer-provider – customer pays provider to forward traffic
 – Peer-to-peer – mutually beneficial traffic exchange with no payments
 • “Settlement-free peering”
 – Backup – peer-to-peer but for backup

• **Traffic engineering** - managing traffic to achieve performance requirements
 – Manage outbound traffic to balance load or control congestion
 – Manage inbound traffic with similar goals

• **Scalability**
 – Limit routing table size
 – Limit rate of route changes
Policies

- **Security**
 - Discard invalid routes (e.g. private prefixes, unallocated prefixes, etc.)
 - Enforce routing peering policies
 - Protect internal services with route filtering
 - Block denial-of-service attacks (e.g. limit number of prefixes allowed)
Review

• BGP routing enforces policies
 – Business relationships: e.g. customers, providers, peers.
 – Traffic engineering
 – Scalability/resource management
 – Security

• “Independent route selection”
 – Private algorithm (determined by policy)... “domains independently choose their route preference functions.”
 – Exchange full-paths to ensure loop freedom
 – Path-Vector routing
Policy-Based, Path-Vector Algorithm
Purpose is Policies

• Largely ignores distance.

• Primary purpose is to implement policies on how traffic should be handled

• When should I use BGP?
 – Dual- or multi-homed
 – Providing partial or full Internet routing to a downstream customer
 – Anytime the AS path information is required
 – *When you need to make a decision based on policy considerations!*
 – Or if you’re bored and want to read the Internet BGP table😊
Single-Homed AS

- A single homed AS does not need BGP!!
- AS 100 is only connected to one AS
- Use static routes
Multi-Homed AS

- AS 200 is multi-homed
- AS 200 needs to run BGP
Policy mechanisms

- **Import transformation** – I_{ij}
 - Applied to new route learned at AS “i” from AS “j”.
 - Applies local policy to determine if route accepted.
 - If so, applies transformations defined by policy.

- **Export transformation** – E_{ij}
 - Applied to new routes selected at AS “i” for export to AS “j”.
 - Applies local policy to determine if route should be exported
 - If so, applies transformation defined by policy.

- **Preference function** – λ_i
 - Selects best route for a given destination of those learned from neighbors
Updates composed of Path Attributes

- **NLRI**
 - Network layer reachability information
 - The IP prefix this update applies to
- **AS_PATH**
 - List of AS’s a route has traversed
 - Used to ensure loop freedom, and influence decision process
- **LOCAL_PREF**
 - Local to an AS
 - Used to coordinate route processing
- **MED**
 - Multi-exit discriminator
 - Conveys preference of multiple entry points to neighboring AS’s
- **Others**
 - **CLUSTER_LIST**
 - **ORIGINATOR_ID**
 - **AGGREGATOR**
 - **ATOMIC-AGGREGATE**
- **Community attributes**
 - Variable-length string used to control route processing in remote routers...
\(\lambda_i \) – “decision process”

- Policy implemented in first 4 steps using update attributes
 - LOCAL_PREF at step 1 allows operator to override other steps
 - First 4 steps identify set of equally good paths
- Last three steps are tie-breakers
 - Step 5 – always prefer someone else’s bandwidth:)
 - Step 6 – use as little of our bandwidth as possible
- Vendors may (do) augment (but not reorder) this function

<table>
<thead>
<tr>
<th>Step</th>
<th>Attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Highest LOCAL_PREF</td>
</tr>
<tr>
<td>2</td>
<td>Lowest AS_PATH length</td>
</tr>
<tr>
<td>3</td>
<td>Lowest ORIGIN type</td>
</tr>
<tr>
<td>4</td>
<td>Lowest MED</td>
</tr>
<tr>
<td>5</td>
<td>External over Internal path</td>
</tr>
<tr>
<td>6</td>
<td>Lowest IGP cost to border router</td>
</tr>
<tr>
<td>7</td>
<td>Lowest router ID</td>
</tr>
</tbody>
</table>
Import and Export transformations

- **Filter** routes for import/export from/to neighbor ASs
- **Modify route attributes** to influence preference function
- **Tag** route with *community attribute* to coordinate actions among a group of routers
- Implemented using a *route-map* in Cisco IOS (and similar for other vendors)
 - Set of conditions for routes it applies to
 - Actions (reject or modify)
- Examples later...

- Much of the following from “BGP Routing Policies in ISP Networks” by Caesar and Rexford (see class web)
Pseudo-code is my approximation

Import transformation applied on receipt of update.

Export transformations applied before SendUpdate().

Preference function invoked to select new route.
Review

• Use BGP when need to make routing decision not based on distance.
 – Multi-homed
 – When you need to make a decision based on policy considerations!

• Policies implemented with three mechanisms
 – Import and export transformations
 – Preference function (BGP decision process)

• Data for filters and decision process carried in path attributes
 – NLRI, AS_PATH, LOCAL_PREF, MED, community attributes, etc.
 – Filters modify path attributes
 – Preference function is defined in terms of path attributes

• BGP path selection is composed of the following steps
 – highest LOCAL_PREF
 – lowest AS_PATH length
 – lowest ORIGIN type
 – lowest MED
 – external over internal path
 – lowest IGP cost to border router
 – lowest router ID
BGP
Overview

• BGP = Border Gateway Protocol

• Currently in version 4

• Uses TCP to send routing messages

• Network administrators can specify routing policies

• BGP’s goal is to find any path (not an optimal one) that meets the policies of all the ASes it transits.
Big Picture

AS 1

Router

AS 2

Router

Router

AS 3

Router

AS 4

Router
Peer Establishment

• Both peers send an OPEN message to TCP port 179
 – IP addresses must be configured correctly
 – update-source must be configured correctly

• If OPENs are exchanged at the exact same time then two TCP sessions will be established but the TCP session from the Rtr with the highest router-ID will be kept and the other torn down

• If RtrA’s OPEN to RtrB is the OPEN that sets up the session, RtrA is said to have “Actively” opened the session and RtrB is said to have “Passively” opened the session

• R4 Actively opened this session:
 r4# show ip bgp neighbors 7.7.7.7
 [snip]
 Local host: 4.4.4.4, Local port: 12916
 Foreign host: 7.7.7.7, Foreign port: 179
External BGP

- BGP peer in different AS
- Usually directly connected
- If not directly connected, use `ebgp-multihopself`

Router A
- `router bgp 100`
- `neighbor 1.1.1.2 remote-as 200`

Router B
- `router bgp 200`
- `neighbor 1.1.1.1 remote-as 100`
Internal BGP

- BGP peer in same AS
- May be several hops away
- iBGP must have a logical full mesh!
- iBGP allows multiple routers to implement BGP in an AS; these routers collectively implement the desired routing policy
Internal BGP

- Peer with loopback addresses
- iBGP session is not dependent on a single interface
- Loopback interface does not go down
- Provides stability!!
- Use `update-source` keyword

Router A
router bgp 100
neighbor 2.2.2.2 remote-as 100
neighbor 2.2.2.2 update-source loop0

Router B
router bgp 100
neighbor 1.1.1.1 remote-as 100
neighbor 1.1.1.1 update-source loop0
Review

• Two components to BGP: eBGP and iBGP
 – iBGP assumes full mesh among routers for an AS
 – iBGP allows multiple routers to implement BGP in an AS; these routers collectively implement the desired routing policy

• BGP peering done over TCP connections (unique among routing protocols)
 – Provides reliability
 – Can be multihop

• Peering typically done between loopback interfaces
 – Loopback interface only fails if router fails
 – Fate-Sharing principle!
Examples
Assigned reading

“BGP Routing Policies in ISP Networks”!
Policy examples – business relationship

• Prefer...
 – ...routes learned from **Customers** over
 • Earn as much $ as possible
 – ...routes learned from **Peers** over
 • Peering relationships based on balance of traffic
 – ...routes learned from **Providers**.
 • Spend as little $ as possible
Assume A is a peer of B, C is a provider to B, and R3 is connected to a customer
 - For outbound traffic, favor customers over peers over providers

Modify import filter
 - On R3 for routes from customer: \texttt{LOCAL_PREF} = 90
 - On R1 and R2 for routes from A: \texttt{LOCAL_PREF} = 80
 - On R4 for routes from C: \texttt{LOCAL_PREF} = 70

Traffic I send will prefer customer over peer (A) over provider (C)
Geographical Control

• ISP that spans U.S. and Europe
 – Want to minimize use of expensive trans-Atlantic link

• Modify import filter
 – For European routers
 • Routes from European peers: `LOCAL_PREF = High`
 – For U.S. routers
 • Routes from U.S. peers: `LOCAL_PREF = High`
No Transit to Peer

- Same assumption (A is peer and C is provider)
 - B doesn’t want to provide transit service for traffic between A and C
- Import filters
 - On R1 and R2 for routes from A: \texttt{add community attribute X}_{\text{peer}}
 - On R4 for routes from C: \texttt{add community attribute X}_{\text{provider}}
- Export filters
 - On R4 for routes with \texttt{X}_{\text{peer}}: \texttt{reject for export to C}
 - On R1 and R2 for routes with \texttt{X}_{\text{provider}}: \texttt{reject for export to A}
- I won’t receive traffic from C for A or vice-versa
Load Balancing

- B wants to shift traffic from its link to A to its link to C
 - E.g. because link to A is overloaded
- 2 choices
 - Import filters in R1 and R2
 - Routes from A: lower LOCAL_PREF value below routes learned from C
 - Import filter on R4
 - Routes from C: higher LOCAL_PREF value above routes learned from A
- Can use regular expression for prefix
Control Inbound Traffic

- B wants to shift traffic load from R1 to R2 (same neighbor)
- Export filter on R1
 - All routes: increase value of MED attribute relative to R2
“Remote Control”

- C agrees to allow B to control flow of traffic into B
- When B wants to route inbound traffic via A
 - Export filters on routers R1 and R2: add community attribute X_{high}
 - Export filters on router R4: add community attribute X_{low}
- And vice-versa when B wants to route inbound traffic via C...
- Import filters on C
 - Routes for prefixes in B with X_{high}: LOCAL_PREF = 75
 - Routes for prefixes in B with X_{low}: LOCAL_PREF = 60
Review

• You can do impressive things with BGP policy mechanisms!

• A simple example is for implementing the classic business relationship of preferring routes learned from **Customers** over those learned from **Peers** over those learned from **Providers**.
 – In the import filter for **Customers**, set `LOCAL_PREF` high (e.g. 90)
 – In the import filter for **Peers**, set `LOCAL_PREF` high (e.g. 90)
 – In the import filter for **Providers**, set `LOCAL_PREF` high (e.g. 70)