Midterm Exam 2 Review

Covers Text:

• Chapter 4
 – Section 4.7 Data Link Layer Switching

• Chapter 5
 – (for exam omit sections 5.2.9-11, 5.4.3, 5.4.4, 5.4.5)

• Chapter 6
 – Through 6.5.10
Internet Layering

Level 5 -- Application Layer
 (rlogin, ftp, SMTP, POP3, IMAP, HTTP..)

Level 4 -- Transport Layer (a.k.a. Host-to-Host)
 (TCP, UDP, RTP)

Level 3 -- Network Layer (a.k.a. Internet)
 (IP, ICMP, ARP)

Level 2 -- Data Link Layer / MAC sub-layer
 (a.k.a. Network Interface or Network Access Layer)

Level 1 -- Physical Layer
General

• Any layer
 – Where does it fit in the layered architecture?
 – What services does it provide and to what layer?
 – What services does it use in providing these services and from what layer?
 – What problems does the layer address/solve or what deficiencies does the layer overcome?
 – What neat algorithms are used in this layer?
 – Where is the layer implemented (in the host, NIC, routers, etc.)?
Efficiency / Utilization

As in homework problems (and last midterm):
Be prepared to determine how a protocol may limit the utilization of a link or network to be less than its inherent capacity.
Know how to calculate the amount of packets, IPDUs etc. that are enroute on a link or in a network given its length and its bit rate (or “speed”)
Link Layer Bridging (802.x)

• Fixed Route Bridging
• Source Route Bridging
• **Transparent Bridging**
 – “Plug ‘n Play”:
 • Flooding algorithm
 • Backward Learning
 – Spanning Tree (avoids loops)
Spanning Tree Approach- Uses:

- IEEE 802.1
- Frame Forwarding
 - Each bridge maintains Forwarding Table
 - List of stations on the “side” of each port
 - Forwards to port and on to LAN corresponding to Table
 - Unless blocked
 - Floods those whose MAC address not in Table
- Address Learning
- Spanning Tree Algorithm
Address Learning

• When frame arrives on a port, table records source address as being on that port. (Backward learning)

• Timer set for each entry
 – Timer expires, entry is deleted
 – Timer reset if new frame gives same info.
Spanning Tree Algorithm

- Algorithm to avoid Loops
- (not needed if topology is a “tree”)
- Root of tree is lowest serial number (all bridges broadcast their serial number)
- Tree constructed from root to every bridge with shortest path
- Algorithm runs “continually” to detect topology changes (IEEE 801.1D)
Network Layer – Chapter 6

- Datagrams and Virtual Circuits
- Packet Routing
- Distance Vector Routing
- Link State Routing
- Hierarchical Routing
- Congestion Control
 - Choke Packets / Load shedding
- QOS (traffic shaping, buffering, overprovisioning)
- Leaky Bucket / Token Bucket
- Tunneling
Network Layer

- IP Protocol / packet (datagram)
 - Headers up to 60 bytes, total length up to 65,535 bytes
- Addressing (subnets, masks), aggregation
- NAT
- ARP / RARP (physical address \leftrightarrow IP address)
- DHCP (dynamic IP address assignment)
- IGP (Interior gateway routing protocol)
 - RIP
 - OSPF (link state algorithm)
- EGP (Exterior gateway routing protocol)
 - Policies / politics / constraints
 - BGP (distance vector protocol)
Network Layer

• IPv4 vs IPv6
 – Main differences between IPv4 and IPv6
 – Reason(s) for change (see text pg. 465)
 – Reason(s) change has been slow to happen
Transport Layer

- End-to-end
- Used by applications on client and server
- Under user control (operating system / programming language calls)
- Transport Services
 - Connectionless (User Datagram Protocol UDP)
 - No flow control, no error control
 - Connection-oriented (TCP)
 - Flow and error control
 - RTP (for multimedia)
Transport Layer

- Connection Management
 - 3-way handshake in making connection
 - Sequence numbers / avoiding duplicates
 - Connection release (timer use)
- Berkeley sockets
- Flow Control and Buffering
- Multiplexing
- Crash Recovery
- End-to-End *ack*
Transport Layer

• TCP
 – Congestion Management
 – Estimating RTT (exponential weighting)
 – Timers
 – “Slow Start” / exponential back-off

• Network Performance
 – traceroute
 – ping
 – Transfer time components (vs. length, bandwidth)