CMPE 150: Introduction to Computer Networks

Dr. Chane L. Fullmer
chane@cse.ucsc.edu
Class information

- Text

 Computer Networking, 2nd Ed. – Kurose & Ross
 Chapters 1, 5, 4, 3, 2 (in that order)
 We’re going from the bottom up...
Class information

- **Homework..**
 - Based on Lecture AND text reading
 - One set for each chapter

- **Midterm**
 - April 29 – requires Scantron

- **Final**
 - June 11 – 8:00 to 11:00 😊
 - (Bring Scantron)
(Optional) Class Project

- Network programming project
 - In lieu of taking final examination
- Goal:
 - Build an FTP client/server from scratch
 - Using ‘C’ language
- Details on web page.. Soon...
Grading Information

- Weights
 - Homework – 40%
 - Midterm – 30%
 - Final – 30%
Grading Information

<table>
<thead>
<tr>
<th>Grade</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>90% → 100%</td>
</tr>
<tr>
<td>B</td>
<td>75% → 90%</td>
</tr>
<tr>
<td>C</td>
<td>60% → 75%</td>
</tr>
<tr>
<td>Fail</td>
<td>< 60%</td>
</tr>
</tbody>
</table>
Homework Assignments

Homework assignment #1

Problems from text at end of chapter
See web page for problem numbers

Due by April 8 (next Tuesday)
CMPE 150: Introduction to Computer Networks
LECTURE 1:
Introduction and Background
Outline

- What is a computer network?
- Brief history and outlook of the Internet.
- What are communication protocols and how do we go about studying them?
- Architectural structure of the Internet.
- Issues of interest with transmission media as a black box.
- Next lecture: More about networks and links.
What Is a Computer Network?

- A *communication network* is a set of nodes connected by links and able to communicate with one another.

- A *computer network* is a communication network in which nodes are computers.

- The purpose of the network is to serve users, which can be humans or processes.

- Network links can be point-to-point or multipoint and implemented with several *transmission media*.

- Information exchanged can be represented in multiple media (audio, text, video, images, etc.)

- Services provided to users can vary widely.
Why Learn about Computer Networks?

- Before .com went bust:
 - THE MONEY!
 - THE JOBS!
 - Microsoft, Cisco, HP, Sun, Nokia, Lucent, AT&T, Sprint, MCI,
 - THE IPOS AND ACQUISITIONS!
 - Akamai, Fastforward (Inktomi), Granite (Cisco), Rooftop (Nokia)
Why Learn about Computer Networks?

- After .com collapse:
 - NETWORKING RESEARCH IS GREAT!
 - Yeah, sure :-)
 - THE ONLY CLASS MEETING YOUR SCHEDULE!
But Really: Why Learn about Computer Networks?

- **Computer networks started as a means for**
 - Distributed processing
 - Communicating among people (electronic mail, conferencing)
 - Increasing system reliability

- **The “web” and affordable hardware have changed this!**
 - We are evolving into Internet-based enterprises, Internet-based home services, and an Internet society

- **The network will be everywhere…**
 - Computers will be used in almost everything we build (including sensors, appliances, books, newspapers)
 - These computers need to be interconnected

NETWORKING = COMPUTING
Why Learn about Computer Networks?

- **Industry and research are wide open to innovation!**
 - As we will discuss over the next few weeks, today’s protocols are oriented to support “host-to-host” communication and assume a client-server model for services and an “open door” policy for the Internet community.
 - The continuing success of the Internet requires:
 - Person-to-person communication (voice and other media over the Internet)
 - Client-to-content services.
 - Security in the services, the infrastructure, and the clients of the Internet

- **Innovation required includes:**
 - Mechanisms to “look-up” content, rather than addresses.
 - Protocols aimed at the new types of communication and services
 - Protocols that adhere to new principles of design.
Evolution of Computer Networks

1876: Telephone by A. Graham Bell
1890s: Electromagnetic telephone switches
1897: Cathode Ray Tube by K.F. Braun
1940s: Computers, error detection and retransmission
1960: RS-232 physical layer interface (the “serial port”) and modems
1960s: T-1 carrier system for telephone transmission (1.5Mbps)
1961: The Compatible Time Sharing System
1962: Paul Baran at RAND proposes packet switching
1965: Automatic equalization by Bob Lucky and others
1968: Carterfone FCC decision that led to AT&T divestiture in 1984.
1969: DARPA funds project on packet switching
1970s: Computerized switches; work on ISDN starts
Evolution of Computer Networks

1970s: ARPANET starts (UCLA, Utah, SRI, UCSB); its technology evolved into today’s Internet

1970s: ALOHA system at U. of Hawaii; first protocol for multiple access channels; leads to Ethernet

1970s: GUI, mouse, hypertext by Doug Engelbart at SRI

1980s: OSI (open system interconnection) reference model

1982: TCP/IP is deployed in ARPANET/MILNET

1984: Host table evolves into DNS in ARPANET

1984: AT&T breaks up

1986: NSFNET is created; becomes Internet backbone

1992: WWW by Tim Berners-Lee (CERN) is released; gives a GUI to the Internet

1990s: Caches and proxies helping clients access content
Evolution of Computer Networks

1970s: CCITT publishes standards for public data networks (X.25 standards)
1980s: Token ring LANs, FDDI emerge; do not replace Ethernet
1990s: ATM evolves; does not replace IP
1990s: Internet: From 4 to 30M+ wired, published nodes in two decades
1990s: SONET (synchronous optical network) and SDH (synchronous digital hierarchy) evolve
1990s: Cellular phones, laptops, palmtops become popular
1999: Gigabit Ethernet starts, simplicity wins again.
Evolution of Computer Networks

What will happen in the 2000s?:

- Ad-hoc wireless networks; self-configuring nets
- Networked sensors and appliances
- System-area networks ("the network is [in] the computer")
- Network-based computing: grid computing ("the computer--processing and storage--is in the network")
- Internet-to-go; deeply networked systems
- IP voice, IP devices
- Content routing: ISPs start to be CDNs, allow clients to obtain content based on its name from the best location

... *Networking = Computing*
What Do We Study?

- We will take the Internet as our running example.
- The Internet has computer hardware, software, operating systems, transmission technology, services defined over it... *What is its glue?*
- *Communication protocols* implemented in software or hardware transform otherwise isolated machines into a society of computers.
- Protocols specify how processes in different machines can interact to provide a given service.
- Distributed algorithms are the essence of what we study.
Communication Protocols

- A set of rules governing the interaction of concurrent processes in a system.

- **A protocol has five parts:**
 - The service it provides.
 - The assumptions about the environment where it executes, including the services it enjoys.
 - The vocabulary of messages used to implement it.
 - The format of each message in the vocabulary.
 - The procedure rules (algorithms) guarding the consistency of message exchanges and the integrity of the service provided.
What Do We Study Regarding Protocols?

- What is a good protocol design?
 - Judging by their survival, Ethernet and IP are good; token ring protocols are not very good.

- What are good and bad aspects in a protocol?
 - TCP adapts to congestion, but it inherently assumes that the Internet sends packets in order.

- Use representative protocols to go over these issues.

- Discuss new directions in computer communication.
What Do We Study Regarding Protocols?

- We will take a first look at the *principles of computer communication*.

- Our principles are:
 - The description of a protocol has no ambiguity.
 - A protocol does what it is supposed to do, all the time.
 - A protocol does not leave any communicating party waiting forever for something to happen.
 - A protocol makes efficient use of available resources.
 - A protocol enables the use of resources fairly or according to a predefined contract.
 - As with most engineering topics, simplicity is important.