Open loop positioning

Torque w/o current — "holding torque"

Stepper Motors

Gabriel Hugh Elkaim
Stepper Motors

- Different types of stepper motors
- Differences in Characteristics
- Stepper Drive Techniques
- Stepper Dynamics
- Snubbing for Stepper Motors
Permanent Magnet (PM) Stepper Motor

24 steps/rev (15°/step)
48 steps/rev (2.5°/step)
PM Stepper Motor Operation

1 → 3
2 → 4
3 → 1
4 → 2
Torque vs. Angular Displacement

Holding Torque

Static Torque

θm

Displace from Equilibrium

STEP ANGLE
Variable Reluctance (VR) Stepper Motor

- Rotor: Laminated Steel
- Magnetically Permeable
- Stator: Rotor/Stage

<table>
<thead>
<tr>
<th>PM</th>
<th>VR</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Torque</td>
<td>Low inertia, higher speed, high actuation</td>
</tr>
<tr>
<td>Defeat torque</td>
<td>Low inertia, higher speed, high actuation</td>
</tr>
</tbody>
</table>
Hybrid Stepper Motor

Good Parts & Both

Tooth structure gives high resolution
200 steps/rev
400 steps/rev

Gabriel Hugh Elkaim
Hybrid Rotor

Laminated core of silicon steel

Permanent magnet
Hybrid Rotor Offset Teeth
Fig. 2.74. Examples of T/I characteristics: (a) a 1.8° four-phase VR motor; and (b) a 1.8° four-phase hybrid motor. (After Ref. [17].)
Stepper Motor Wiring

- 2 phase
 - 4 wires

- 3 phase
 - 6 wires

- 4 phase
 - 8 wires

- Universal drive

- 2 phase
 - 5 wires
 - Universal wind
Wiring Direction is Important

The diagram illustrates the concept of bipolar winding, where wires are connected in a specific direction to achieve a particular effect or function.
2-Phase Universal Wound vs. 4-Phase

a

b
Two Full N-BRIDGES / 4 Half N-BRIDGES

Driving Stepper Motors

Two phase bipolar wound
Stepper Sequences: Full Step
Stepper Sequences: Full Step

Bipolar

<table>
<thead>
<tr>
<th>Step</th>
<th>Q1-Q4</th>
<th>Q2-Q3</th>
<th>Q5-Q8</th>
<th>Q6-Q7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ON</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td>2</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
</tr>
<tr>
<td>3</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
<td>ON</td>
</tr>
<tr>
<td>4</td>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td>1</td>
<td>ON</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
</tr>
</tbody>
</table>

CW Rotation

CCW Rotation

![Diagram of stepper motor and control circuit](image-url)
Stepper Sequences: Wave Drive
Stepper Sequences: **Wave Drive**

<table>
<thead>
<tr>
<th>Step</th>
<th>Q1-Q4</th>
<th>Q2-Q3</th>
<th>Q5-Q8</th>
<th>Q6-Q7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>2</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
</tr>
<tr>
<td>3</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>4</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td>1</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
</tbody>
</table>

The diagram shows the connection of coils, where the highlighted coils are active at different steps. The direction of rotation is indicated by the arrow on the gear.
Stepper Sequences: **Half-Step**

DOUBLE STEPS

TORQUE RIPPLE
Stepper Sequences: Wave Drive

<table>
<thead>
<tr>
<th>Step</th>
<th>Q1-Q4</th>
<th>Q2-Q3</th>
<th>Q5-Q8</th>
<th>Q6-Q7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ON</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td>2</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>3</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
</tr>
<tr>
<td>4</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
</tr>
<tr>
<td>5</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
<td>ON</td>
</tr>
<tr>
<td>6</td>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td>7</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td>8</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td>1</td>
<td>ON</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
</tr>
</tbody>
</table>
Stepper Sequences: Micro-stepping

100%
75\%
50\%
25\%

QRT Finer Motion

V+ 50\% Sine Wave

Gnd
Generating the Drive

PNSE Train

Logic Sequencer

Motor

N-bridge

SN 754402

DRV8814

2.8A

DIN 8811 ~ 2A

McFadzean

Uno 32
Stepping Dynamics

\[\Delta \theta_s \]

Time

\[\text{Forward} \]

\[\text{Reverse} \]
Load Effects on Step Dynamics

No Load

Motor: PH326-01

X axis: A 0.5 ms/div.
B 20 ms/div.
Y axis: 0.9°/div.

Inertia Load 0.82 oz-in² (150 g-cm²)

Motor: PH326-01

X axis: A 0.5 ms/div.
B 20 ms/div.
Y axis: 0.9°/div.

Friction Load 6.95 oz-in (4.9 N-cm)
Drive Effects on Step Dynamics

Fig. 2.55. Difference in single-step response between the single-phase (a) and two-phase (b) excitation.
Stepper Motor Performance Curves

- Hold Torque
- Max Hold Torque
- Pull-in Range
- Run-out Torque
- Max Speed Torque
- Stepping Rate (MTRS)

106J

Gabriel Hugh Elkaim

CMPE 118/218 – Intro. to Mechatronics
Stepper Motor Current Dynamics

- Current
- Time
- High Force
- Low Force

Graph showing current and time with different force levels.
L/nR Drive (1.3)
L/nR Drive (2.3)
L/R Drive (3.3)

- Torque vs. Speed (PPS)
- Units: [N-cm] and [oz-in]
- Curves for different L/R ratios: L/4R, L/R, L/2R
- Comparison between pull-in and pull-out torques
2-Level Drive
Chopper Drive
Diode Snubber for H-bridge
Zener Snubber for H-bridge
Other Snubbing Alternatives (1.3)
Other Snubbing Alternatives (2.3)
Other Snubbing Alternatives (3.3)
Snubbing Techniques Compared (1.2)

- Diode Only
- Resistor + Diode
- Zener Only
- Diode + Zener
- No Snubber
Figure 6-5 Torque-speed curves of Oriental Motor PH266-01 stepping motor with no diode, diode + 150 ohm resistor and diode suppression circuits
Questions?
Team Rosters

Jason Vranek, Kenneth Cesar Bendo, Masaya Takahashi
Joshua Gier, Tianyi Zhu, Xiang He
Brian Metz, Kerim Hurd-Korkmaz, Yusuke Kojitani
David Chalco, Emily Enlow, William Van Hyning
Calvin Ryan, Laura Rivera, Tyler Reed
Arjun Mylavarapu, Milo Webster, Yu-Hsiang Lo
Christopher Espino, Haoyue Gao, Miguel Flores
Jamie Dieckman, Leya Bre Darla Baltaxe-Admony, Vishnu Surya Reddy Nandi
Daniel Hunter, Harikrishna Kuttivelil, William Cheng
Jason Vance, Justin Lee, Niraj Raniga
Abhiram Madenur Venkatesha, Anthony Chong, Garrett Stoll
Jacob Stelzriede, Javier Ruiz, Joseph Legnitto
Alexander Martin-Ginnold, Kurt Ringer, Veronica Hovanessian
Alejandro Millan, Andrea David, Sargis Yonan
Amirhossein Forouzani, Damian Carusillo, Sahil Singh
Jeremy Crowley, Joseph Grant, Perla Plascenda, Randall Hill
Joshua Passmore, Joshua Pena, Julia Warner
Michael Delorio, Sabrina Sedell, Victoria Ly
Denzel Mapp, Joseph Carlos, Michael Bissani
Alec Reid, Erik Jung, Marco Carmona
Aaron Lauro, Carl Eadler, Elmer Orellana
Aidan Forrest, Brandon Lake, Christopher Villalpando Estrada
Garrett Deguchi, Michael Grimes, Taylor Gotfrid
Aaron Ramirez, Roger Berman, Sterling Dreyer
Announcements

Turn in MIDTERM!!
Horse Trading Rules

- You are allowed to swap one member of one team for one member of another team under the following conditions:

1. You have 24 hours to do this.
2. All members of both teams must agree to the swap.
3. One swap per team ONLY
Working w/ Teams

- Communicate
- Set meeting/go to those meetings
- Manage conflicts
 → Bring me in.
Join LinkedIn group

"Current and Former Skyllers"

First Group Assignment
Exchange your cell numbers.
P.D.R. on Thursday

Preliminary Design Review