Statics and Basic Mechanics

Gabriel Hugh Elkaim
Fall 2014
Forces (in general)

- Useful concept to describe the way in which bodies interact.

Force - vector quantity (directed).

Statics (Civil Engineering)
- Balanced Forces
 \[\sum F = \emptyset \]
 \[\rightarrow - ma \]

Dynamics
- Accelerated Force
 \[\sum F = ma = \frac{d^2x}{dt^2} \]
 \[\rightarrow - ma \]
External Forces: Normal
External Forces: Moments

\[\sum \vec{F} = \vec{0} \]

\[\sum M = \phi \]

\[M = I \times \vec{F} \]
Forces: Compression

Aspect Ratio matters

Buckling

Trusses
Forces: Tension

Aspect ratio does not matter.

Mark's Properties of Materials:

\[M = \int \rho A dl \]

\[\sigma = \frac{F}{A} = \frac{\rho AL}{A} \]

Gabriel Hugh Elkaim – Fall 2014
Carrying Forces (loads)

True Forces

1. Flexible cable, belt, chain, or rope
 - Weight of cable negligible
 - Weight of cable not negligible

Idealized Forces

- Force exerted by a flexible cable is always a tension away from the body in the direction of the cable.

\[T \cos \theta \]
Carrying Forces (loads)

2. Smooth surfaces

Contact force is compressive and is normal to the surface.
Carrying Forces (loads)

3. Rough surfaces

\[F = \mu N \]

Rough surfaces are capable of supporting a tangential component \(F \) (frictional force) as well as a normal component \(N \) of the resultant contact force \(R \).

Coefficient of friction - Static friction \(\mu_s \)
Dynamic friction \(\mu_d \)

- Ice \(\sim 0.1 \)
- 0.7
Carrying Forces (loads)

4. Roller support

Roller, rocker, or ball support transmits a compressive force normal to the supporting surface.
Carrying Forces (loads)

5. Freely sliding guide

Collar or slider free to move along smooth guides; can support force normal to guide only.

pin in slot
sleeve on shaft
Carrying Forces (loads)

6. Pin connection

A freely hinged pin connection is capable of supporting a force in any direction in the plane normal to the axis; usually shown as two components R_x and R_y. A pin not free to turn may also support a couple M.
Carrying Forces (loads)

Cantilever

7. Built-in or fixed support

A built-in or fixed support is capable of supporting an axial force F, a transverse force V (shear force), and a couple M (bending moment) to prevent rotation.
The Basics of Statics

\[\sum F = \Phi \]
\[\sum M = \Phi \]

Linear Momentum
\[m \vec{v} \text{ or } m \vec{a} \]

Free Body Diagram

\[\sum \vec{F} = m \ddot{\vec{x}} \]
\[\sum \vec{M} = I \ddot{\theta} \]

Angular Momentum
\[I \vec{\omega} \text{ or } J \ddot{\theta} \]

Gravitational Force
\[F = mg \]
An Example: A Pulley

Fig. P6-46

\[P = \frac{mg}{4} \]
Examining a Robot

1. How is the weight of the thing supported?
2. How does it change if it is under motion?
3. Other interesting aspects of the device?
4. Draw a free-body diagram of part 1 (and if you feel ambitious, part 2).
Questions?
Questions
Mechanical CAD

Gabriel Hugh Elkaim
Fall 2014
Mechanical CAD

- Communication Mechanical Ideas to Someone else

Computer Aided Design
What is CAD?

Software World — Auto coders

Dave - Infineon
Simulink/MATLAB
What is CAE?

Computer Aided Engineering

Mechanical - Finite Element Analysis (FEA)
 - Cosmos/MD, ANSYS

Electrical - SPICE Circuit Simulation
 - Auto-热播

Software - Auto Coders (CAE)
 - Optimizers
 - Simulink/Modelica
 - Matrices
What is CAM?

Computer Aided Manufacturing

Mechanical -

CNC machining
Lathe cutting

Additive Manufacturing -

SLS print
Vapor deposition
Extruders

RCM
60 ksi
Traditional 3-View Drawing

Top

Front

Side

Remember Dimensions
Questions?
Shape ways
$ 45/kb
(Laser)

Next Source

Fire Triangle

Fuel

Oxygen (Air)

Don't Panic