Resource Access Protocols

- Some resources (data structures, physical resources) need to be protected, so that when a process starts using them, no other process can use them until the first process is done.
- Method: locks (semaphores).

Locks and deadlocks

P: do {
 wait (L1)
 wait (L2)
 use (R1)
 use (R2)
 release (L2)
 release (L1)
}

Q: do {
 wait (L2)
 wait (L1)
 use (R1)
 use (R2)
 release (L1)
 release (L2)
}

Possible result: P gets L1, Q gets L2, deadlock!

The cure? Total ordering of locks.

- Choose a total order of all locks: L_1 < L_2 < ... < L_n
- When you need both L_i and L_j, get first the lock that comes first in the order.
- Problems:
 - How to decide an order if locks protect, say, access to Java objects created dynamically?
 - How to enforce/check that the policy is respected?

Scheduling with locks

- Even when one-way locking is used, priority inversion problem:
 high priority: unbounded wait
 low priority
Priority inheritance protocol

- Each job i has two priorities: the nominal priority P_i, and the (possibly higher) active priority Q_i.
- Jobs are scheduled according to their active priority.
- Initially, $Q_i = P_i$ for all jobs.
- Locks: $lck_1, lck_2, ..., $ each guarding a critical section.

Priority inheritance

- Define a relation \prec between processes, such that $i \prec j$ if j holds a lock on which i is waiting.
- Let \prec^* be the reflexive transitive closure of \prec.
- Let $Q_k = \max\{P_i \mid i \prec^* k\}$

Priority inheritance: implementation

Data structure:

- With each lock (semaphore) s:
 - s.holder: process that has the lock
 - s.waiting: list of waiting processes
- With each process p:
 - p.waiting: lock for which it is waiting
 - p.holding: list of locks that it is holding.

process k calls wait(s):

```plaintext
if s.holder = ∅, then {
  s.holder = k;
  append (k.holding, s);
} else { /* s.holder ≠ ∅ */
  append (s.waiting, k);
  k.wait = s;
  call priority_increase (s.holder, Q_k);
  suspend; /* waits to be woken up */
  s.holder = k; s.wait = ∅;
  append (k.holding, s);
}
```

Process k does signal(s):

```plaintext
s.holder = ∅
remove (k.holding, s);
Q_k = max(P_k, dyn_priority(k.holding));
unlock s;
if s.wait ≠ ∅ {
  j = highest priority process in s.wait;
  remove (s.wait, j);
  wakeup (j); /* Tell $j$ it can enter $s$ */
}
```
Priority inheritance: implementation

dyn_priority (sem_list):
 p = minimum_priority;
 for each s in sem_list {
 p = max (p, max {Qi | i \in s.wait});
 }
 return p;

Types of blocking

Schedulability analysis

- **Fact 1**: Job J_k waits for at most one completion of a critical section of job that blocks it (directly or indirectly), regardless of how many times J_k is using each lock.
- **Proof**: since k has higher priority, once J_i gets out, J_k will not let it begin something else.

Schedulability analysis

- **Fact 2**: If job k uses lock lck, then it can be blocked for the duration of at most one critical section guarded by lck, regardless of how many times lck is used by how many processes.
- **Proof**: k has higher priority (by definition) that all processes that try to block it. Hence, the first time k tries to get a lock lck, it will be blocked for at most the time it takes for the lower-priority job inside to get out. The following times, no lower-priority process may have gotten inside a section guarded by lck.

Computing the maximum blocking time

Case for non-recursive locks ONLY

- For each lock s, define $C(s)$ (the ceiling of s) by $C(s) = \max (P_j; j \text{ uses } s)$.
- $D_{is} = \text{maximum duration in process } i \text{ of a critical section guarded by lock } s$.

Computation of blocking time

For each process:

$$B_{i}^{\text{proc}} = \sum_{j=i+1}^{n} \max \{D_{j,s_k} | C(s_k) \geq P_i\}$$

$$B_{i}^{\text{locks}} = \sum_{k=1}^{m} \max \{D_{j,k} | C(s_k) \geq P_i\}$$

$$B_i = \min \{B_{i}^{\text{proc}}, B_{i}^{\text{locks}}\}$$
Example

<table>
<thead>
<tr>
<th>J_1</th>
<th>lck_1</th>
<th>lck_2</th>
<th>lck_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>J_2</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>J_3</td>
<td>0</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>J_4</td>
<td>8</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>J_5</td>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>

- J_1 processes: 9+8+6 = 23
- J_1 locks: 9+8 = 17
- Blocking bound: 17

Example

<table>
<thead>
<tr>
<th>J_1</th>
<th>lck_1</th>
<th>lck_2</th>
<th>lck_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>J_2</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>J_3</td>
<td>0</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>J_4</td>
<td>8</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>J_5</td>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>

- J_2 processes: 8+6 = 14
- J_2 locks: 7+4 = 11
- Blocking bound: 11

Example

<table>
<thead>
<tr>
<th>J_1</th>
<th>lck_1</th>
<th>lck_2</th>
<th>lck_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>J_2</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>J_3</td>
<td>0</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>J_4</td>
<td>8</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>J_5</td>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>

- J_3 processes: 6
- J_3 locks: 6+5 = 11
- Blocking bound: 6

Example

<table>
<thead>
<tr>
<th>J_1</th>
<th>lck_1</th>
<th>lck_2</th>
<th>lck_3</th>
<th>lck_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>J_2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>J_3</td>
<td>0</td>
<td>9</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>J_4</td>
<td>8</td>
<td>7</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>J_5</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>11</td>
</tr>
</tbody>
</table>

The true lower bound is computed looking at a selection that never repeats locks nor jobs. Complexity: NP-complete (I bet).

Schedulability analysis: RM

Theorem: consider a set of n periodic tasks J_1 ... J_n where P_1 > ... > P_n, and assume that for all 1 \leq i \leq n we have:

\[\frac{B_i}{T_i} + \sum_{k=1}^{i} \frac{C_k}{T_k} \leq i(2^{1/i} - 1) \]

then the set of periodic tasks is schedulable using Priority Inheritance and Rate Monotonic.
Proof:

- If the criterion holds, then a job i has enough time even if lasted for $C_i + B_i$, taking into account the preemption C_k/T_k from higher priority jobs.

Schedulability analysis: RM

- **Theorem**: consider a set of n periodic tasks $J_1, ..., J_n$ where $P_1 > ... > P_n$, and for $1 \leq i \leq n$ let R_i be the least fixpoint of

$$R_i = C_i + B_i + \sum_{j=1}^{i-1} \left\lfloor \frac{R_j}{T_j} \right\rfloor C_j$$

then, if $R_i < D_i$ for all $1 \leq i \leq n$, the processes are schedulable by RM or DM.

Chained blocking

<table>
<thead>
<tr>
<th>lock 1</th>
<th>lock 2</th>
</tr>
</thead>
</table>

Priority Ceiling Protocol

- Each lock s has a priority ceiling $C(s)$: highest priority of task that will lock it.
- When a task i wants to get a lock s, we compute the set H_i of locks held by tasks different from i, and we compute

$$P^* = \max \{C(s') \mid s' \in H_i\}$$

- The process i gets the lock s only if $P_i > P^*$. Note that P^* is independent from the desired lock s!

Example: without ceiling

<table>
<thead>
<tr>
<th>P=3</th>
<th>wait1</th>
<th>wait2</th>
</tr>
</thead>
<tbody>
<tr>
<td>P=2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P=1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example: with ceiling

<table>
<thead>
<tr>
<th>P=3</th>
<th>wait1</th>
</tr>
</thead>
<tbody>
<tr>
<td>P=2</td>
<td></td>
</tr>
<tr>
<td>P=1</td>
<td></td>
</tr>
</tbody>
</table>

Here, the ceiling is set to 3

The process with $P=2$ cannot enter, even though it wants another lock.
Properties of Priority Ceiling

Lemma: if task k is preempted in a critical section Z by a job j that then enters a critical section W, then k cannot inherit a priority greater than that of j until j leaves W.

Proof: If k inherits a priority greater than that of j before j completes Z, it means that there is a job m that blocks on Z and raises the priority of k so that $P_k > P_j$. But then the ceiling of Z would be at least P_m, and j would not have been able to enter W.

Properties of Priority Ceiling

Theorem: The priority ceiling protocol prevents transitive blocking.

Proof: Suppose that a transitive block occurs: J_1 blocks J_2, and J_2 blocks J_3. Assume $P_i = 4 - i$. Then, J_3 will inherit the priority of J_1; however, this contradicts the previous lemma, that says that once J_1 enters W, since W has ceiling at least 3, then J_2 cannot enter its region and block J_3.

Properties of Priority Ceiling

Theorem: The priority ceiling protocol prevents deadlocks.

Proof: A deadlock can only happen when there is a cycle of blocked processes. Consider the shortest cycle: J_1 blocks J_2, and vice-versa; J_1 has higher priority. Then, who entered first?
- If J_2, then the ceiling was raised to P_1; then J_1 could not have entered.
- If J_1, then J_2 could not have entered. In both cases, we reach a contradiction.

Properties of Priority Ceiling

Theorem: Under the priority ceiling protocol, a job can be blocked for at most the duration of a critical section.

Proof: Suppose that J_1 is blocked by two lower-priority jobs J_1 and J_2, where $P_2 < P_1$. Then, J_2 enters the critical section first, and C^*_{2} is the ceiling of that section. Hence, we must have $P_1 > C^*_{2}$. Moreover, since J_1 can be blocked by J_2, we have $P_1 > C^*_{2} \geq P_i$. This contradicts $P_i > P_1$.

Properties of Priority Ceiling

Theorem: under the priority ceiling protocol, a critical section $Z_{j,k}$ in job J_k and guarded by lock S_k can block a job J_i only if $P_i < P_k$ and $C(S_k) \geq P_i$.

Hence, define

$$B_i = \max_{j,k} \{ D_{j,k} | P_i < P_k, C(S_k) \geq P_i \}$$

where $D_{j,k}$ is the duration of $Z_{j,k}$.

Which critical sections can block a job?

Process J_k calls wait(s):

1. Find the lock s' having max ceiling C' among the locks held by processes other than J_k.
2. If $P_k \leq C'$, transfer P_k to the process that holds s', insert J_k into the ready queue, and execute the ready job (other than J_k) with the highest priority.
3. If $P_k > C'$, then J_k locks s and enters the associated critical section.
Priority Ceiling: Implementation

Process J_k calls signal(s):
- Remove s from the list of locked locks.
- If no other jobs are blocked by J_k, then set P_k to the nominal priority of J_k.
 otherwise set P_k to the highest priority of jobs are blocked by J_k.
- Let P^* be the highest priority among ready jobs. If $P_k < P^*$, insert J_k in the ready queue and execute the ready job (different from J_k) with highest priority.