CMPE 117

Lectures:
Periodic Task Scheduling

© Luca de Alfarro, 2002

Periodic Task Scheduling

- T_i: i-th task
- T_i: period of i-th task
- D_i: relative deadline of i-th task
- Φ_i: phase (relative start time) of i-th task
- C_i: computation time of i-th task

Quality of schedule

- **Response time** $R_{ij} = f_{ij} - r_{ij}$
- **Critical instant**: the time at which, if a task is released, it will have the largest response time.
- **Absolute jitter**:
 - Start: $\max_j (s_{ij} - r_{ij}) - \min_j (s_{ij} - r_{ij})$
 - Finish: $\max_j (f_{ij} - r_{ij}) - \min_j (f_{ij} - r_{ij})$

Assumptions

- **A1**: The tasks are periodic, period $= T_i$
- **A2**: All instances have the same worst-case execution time C_i
- **A3**: All instances have the same relative deadline $D_i = T_i$
- **A4**: All tasks in the set I of tasks are independent

(We will relax these conditions later)

More assumptions

- The tasks do not suspend themselves on I/O
- All overheads in the kernel are assumed to be 0.
Processor Utilization

- Processor utilization \(U = \sum_{i=1}^{n} \frac{C_i}{T_i} \)

- For a set of periods \(\Theta \) and an algorithm \(A \), let \(U_{\Theta}(\Theta, A) \) be the upper bound of the processor utilization factor for tasks with \(\Theta \) to be schedulable by \(A \).
- Let \(U_{\min} = \min_{\Theta} U_{\Theta}(\Theta, A) \).
- If \(U < U_{\min} \), we know that the tasks are schedulable.

Task deadlines equal to the period

Rate Monotonic Scheduling

- Assign priority to process \(i \) proportional to the rate \(1/T_i \)
- Summary:
 - Optimal with respect to all fixed-priority algorithms
 - \(n \) tasks are guaranteed schedulable if \(U \leq n(2^{1/n} - 1) \).
 - For \(n \to \infty \), \(n(2^{1/n} - 1) \to \ln 2 \approx 0.69 \)

Critical Instant for RM

The critical instant occurs when all the tasks are released simultaneously.

Worst-Case Response Time for RM

The worst-case response time for a job occurs when it is released simultaneously with all higher-priority (shorter-period) jobs.

The worst-case response time can be computed either from a schedule (as above), or with an equation we will present later.

Schedulability test for RM

- Approximate: \(n \) tasks are guaranteed schedulable if \(U \leq n(2^{1/n} - 1) \).
- Precise: \(n \) tasks are guaranteed schedulable iff, for all \(1 \leq i \leq n \), we have \(R_i \leq T_i \), where \(R_i \) is the worst-case response time.
RM is optimal among fixed priority schedulers

- We study the case of two processes, with $T_1 < T_2$.
- RM assigns $P_1 > P_2$.
- We will show this is better than $P_2 > P_1$.
- Clearly, if a generic algorithm uses a different order than RM, there must be at least two processes that are assigned priorities in reverse order wrt. RM.

Priority $P_2 > P_1$: (\neq RM)

- Maximum utilization: $C_1 + C_2 \leq T_1$

Analysis

- By non-RM: $C_1 + C_2 \leq T_1$ \hspace{1cm} (1)
- By RM: $(F+1)C_1 + C_2 \leq T_2$ \hspace{1cm} (2)
- We show (1) implies (2): rewriting (1),

 $FC_1 + FC_2 \leq F T_1$

 $FC_1 + C_2 \leq FC_1 + FC_2 \leq F T_1$

 $(F+1)C_1 + C_2 \leq F T_1 + C_1$

 $(F+1)C_1 + C_2 \leq F T_1 + C_1 \leq T_2$

Priority $P_2 < P_1$: ($= RM$)

- Case 1: $F = \lfloor T_2 / T_1 \rfloor$, $C_1 < T_2 - F T_1$
 - Schedulable if $(F+1)C_1 + C_2 \leq T_2$

Analysis

- By non-RM: $C_1 + C_2 \leq T_1$ \hspace{1cm} (1)
- By RM: $FC_1 + C_2 \leq F T_1$ \hspace{1cm} (3)
- We show (1) implies (3): rewriting (1),

 $FC_1 + FC_2 \leq F T_1$

 $FC_1 + C_2 \leq FC_1 + FC_2 \leq F T_1$

Priority $P_2 < P_1$: ($= RM$)

- Case 2: $F = \lfloor T_2 / T_1 \rfloor$, $C_1 \geq T_2 - F T_1$
 - Schedulable if $FC_1 + C_2 \leq F T_1$
Least upper bound for RM

- n processes sharing CPU: \(n(2^{\frac{1}{n}} - 1) \)
- When \(n \to \infty \): \(\ln 2 \approx 0.69 \)
- Calculus check:
 \[
 n \left(2^{\frac{1}{n}} - 1 \right)
 = n \left(e^{\ln 2^{\frac{1}{n}}} - 1 \right)
 \approx n \left(1 + (\ln 2)/n - 1 \right)
 \approx \ln 2 \text{ as } n \to \infty
 \]

Earliest Deadline First

Theorem: A set \((c_1, \ldots, c_n)\) of periodic tasks is schedulable with EDF iff

\[
\sum_{i=1}^{n} \frac{c_i}{T_i} \leq 1.
\]

Proof: only if: obvious.

Proof if \(\sum_{i=1}^{n} \frac{c_i}{T_i} \leq 1\) then schedulable

\[
C_p(t_1, t_2) = \sum_{i=1}^{n} \left| \frac{t_2 - t_1}{T_i} \right| c_i \leq \sum_{i=1}^{n} \frac{t_2 - t_1}{T_i} = (t_2 - t_1)U.
\]

\[
t_2 - t_1 < C_p(t_1, t_2) \leq (t_2 - t_1)U.
\]

Schedulability test for EDF

- Precise: \(n \) tasks are guaranteed schedulable iff \(U \leq 1 \).

Note: we cannot possibly do better than EDF! So why is RM used? Because it's simpler: we don't need to tell the processor the deadlines. It relies on simpler processor scheduling mechanisms.

Homework

- Ex 4.2 from Buttazzo: given the set of periodic tasks:
 - (a): \(C_1 = 1, T_1 = 4 \)
 - (b): \(C_2 = 2, T_2 = 6 \)
 - (c): \(C_3 = 3, T_3 = 10 \)
- [10pt] Verify that they are schedulable by RM, using the processor utilization approach
- [20pt] Compute the maximum response time
- [10pt] Compute (and draw) the schedule
Homework

- Ex 4.7 from Buttazzo: given the set of periodic tasks:
 - t_1: $C_1 = 2$, $T_1 = 6$, $D_1 = 5$
 - t_2: $C_2 = 2$, $T_2 = 8$, $D_2 = 4$
 - t_3: $C_3 = 4$, $T_3 = 12$, $D_3 = 8$
- [10pt] Verify the schedulability under EDF
- [10pt] Construct and draw the schedule.

Homework (cont.)

Assume that you must execute m jobs, each with period T_i, and computation time equal to the period: $C_i = T_i$. To do this, you can use a number k of processors, scheduled with RM, and you can choose the speed v of each processor. If a processor has speed v_i, then one of the m processes will take $1/v$ time to execute on it. Recall that, if you run n processes over a single processor, the max load is given by $n(2^{1/n} - 1)$.

Task deadlines shorter than the period

Periodic tasks with deadlines shorter than the period

Two approaches:

- Deadline monotonic (DM), derived from rate monotonic.
- EDF.

As usual, EDF is optimal.

Deadline Monotonic (DM)

- D_i: deadline of task i, relative to period: $D_i < T_i$
- Deadline monotonic algorithm: assign highest priority to the process with the smallest relative deadline D_i.
DM: Schedulability analysis

- Naive approach: reduce the problem to RM, and check
 \[
 \sum_{i=1}^{n} \frac{C_i}{D_i} \leq n(2^{1/n} - 1)
 \]
 Note: used to be \(T_i\)

But we can do better!

DM: Schedulability Analysis

Schedulable iff \(R_i \leq D_i\) for all tasks \(J_i\), where \(R_i\) is the worst-case response time.

DM: Schedulability Analysis

How can we compute the worst-case response time?

Method 1: by drawing a schedule when all processes are released simultaneously.

Computing the Response Time

We can write the worst-case response time as

\[R_i = C_i + I_i \]

where \(R_i\) is the response time, and \(I_i\) is the interference to task \(i\) due to tasks having priorities higher than that of \(i\).

Computing the response time

\[
R_i = C_i + I_i = \sum_{j=1}^{i-1} \left\lfloor \frac{R_j}{T_j} \right\rfloor C_j
\]

\[
R_i = C_i + \sum_{j=1}^{i-1} \left\lfloor \frac{R_j}{T_j} \right\rfloor C_j
\]

This equation in \(R_i\) has many fixpoints; we want the *least* fixpoint.
DM: Schedulability test

$$R_i = C_i + \sum_{j=1}^{i-1} \left[\frac{R_j}{T_j} \right] C_j$$

- We want the least fixpoint.
- Think of it as $R_i = F(R_i)$.
- Note that F is monotonic and left-continuous.
- Solution: $R_i = \mu \times F(x) = \lim_{n \to \infty} F^n (O)$.
 (compute by iteration)

EDF, for deadlines \leq periods

- When the deadline is shorter than the period, we can also use EDF.
- As usual, EDF turns out to be better than DM (similarly to EDF vs. RM when the deadlines are equal to the periods). The drawback of EDF is that it needs priorities to be changed dynamically.

EDF Schedulability

Theorem: A set of periodic tasks is schedulable by EDF iff, for all $L \geq 0$:

$$L \geq C_p(0, L)$$

Proof: The theorem is proved by showing that the above is equivalent to the formulation based on utilization we showed before.

EDF schedulability test

- Note that we need to check that $L \geq C_p(0, L)$ only for values of L that:
 - correspond to some deadline (since that's where C_p may increase)
 - are smaller than the hyperperiod
 $$H = \prod_{i=1}^n T_i$$
 - are no larger than the busy period
 (additional optimization, see Buttazzo)
EDF Schedulability: Example

• $J_1: (C_2=2, T_1=6, D_1=5)$
• $J_2: (C_2=2, T_1=8, D_1=4)$
• $J_3: (C_2=4, T_1=12, D_1=8)$
• Hyperperiod: $H = \text{mcm}(6, 8, 12) = 24$.
• Deadlines $\leq H$:
 4 (J_3), 5 (J_2), 6 (J_3), 11 (J_3), 12 (J_2), 17 (J_3), 20 (J_2 and J_3), 23 (J_3).

EDF Schedulability: Example

• $C_1(0,4) = C_2 = 2 \leq 2$
• $C_1(0,5) = C_2(0,4) * C_1 = 4 \leq 5$
• $C_1(0,8) = C_2(0,5) * C_1 = 8 \leq 8$
• $C_1(0,11) = C_2(0,8) * C_1 = 10 \leq 11$
• $C_1(0,12) = C_2(0,11) * C_1 = 12 \leq 12$
• $C_1(0,17) = C_2(0,12) * C_1 = 14 \leq 17$
• $C_1(0,20) = C_2(0,17) * C_1 = 20 \leq 20$
• $C_1(0,23) = C_2(0,20) * C_1 = 22 \leq 23$
• Schedulable!