CE 108 – HOMEWORK 1

EXERCISE 1. (ALL)
Consider the sequence x(n) of values in
http://www.soe.ucsc.edu/classes/cmpe108/Fall07/ce108HW1.txt
http://www.soe.ucsc.edu/classes/cmpe108/Fall07/ce108HW1.xls.

1. If possible, plot the sequence (using any available software).
2. Determine the alphabet S_x of the source and compute the probability of the symbols (based on their relative frequency in the sequence).
3. Determine the 1st order entropy of the source.
4. Transform the sequence $x(n)$ into the sequence $d(n)=x(n+1)-x(n)$. Determine the alphabet S_d, compute the symbol probabilities and the 1st order entropy for $d(n)$. Compare the latter with the 1st order entropy for $x(n)$.
5. Compute the 2nd order entropy of $d(n)$. To do so, determine the Cartesian product $S_d^2 = S_d \times S_d$, compute the probabilities of the symbols in S_d^2, and compute the corresponding entropy. Compare your result with the 1st order entropy of $d(n)$ and with the 2nd order entropy of $x(n)$. [Remember that the 2nd order entropy of a process is $H_2 = -1/2 \sum_x \sum_y P(x,y) \log_2 P(x,y)$, where x and y are two consecutive random variable in the process.]

EXERCISE 2. (GRADS - review)
Remember Jensen’s inequality: If $f(x)$ is convex, then $E[f(x)] \geq f(E[x])$. Use this to prove the following:
- $0 \leq H \leq \log_2 N$, where H is the entropy of x and N is the size of the alphabet of x.
- $D_{KL}(P||Q) \geq 0$, where $D_{KL}(P||Q)=\sum_x P(x) \log(P(x)/Q(x))$ is the relative entropy (of Kullblak-Leibler divergence) of $P(x)$ and $Q(x)$ and $P(x)$, $Q(x)$ are mass distributions.

EXERCISE 3. (GRADS - review)
Use the results of Exercise 2. to prove that the 2nd order entropy of a process, H_2, is always \leq the 1st order entropy H.

EXERCISE 4. (GRADS)
The “mutual information” of two variables is defined as $MI(x,y) = H(x)-H(x|y)$. Prove that $MI(x,y)$ satisfies the following properties:
- $MI(x,y) = MI(y,x)$
- $MI(x,y) \geq 0$

EXERCISE 5. (GRADS)
Consider the discrete random variables x and $y=f(x)$, where $f(x)$ is a function.
- Prove that, if the $f(x)$ is bijective (invertible), then the entropy of x is equal to the entropy of y.
- Prove that if $f(x)$ is not invertible, then the entropy of x is larger than or equal to the entropy of y.
Use the first result to prove that the entropy rate of a process does not change under invertible transformation of the process.

EXERCISE 6. (UGRADS)
Consider a variable x with alphabet $A=\{x_1,x_2,x_3,x_4\}$ and probability mass distribution $\{P_1,P_2,P_3,P_4\}$, and a variable y with alphabet $A=\{x_1,x_2,x_3\}$ and probability mass distribution $\{P_1,P_2,P_3+P_4\}$. Which one of the two has higher entropy?

EXERCISE 7. (ALL)
Consider a source that produces symbols from the alphabet $\{a,b,c,d\}$ at a rate of 5 symbols per second, with a probability distribution that changes cyclically in time. More precisely, the source alternates 1 second with probability distribution $\{0.1,0.15,0.3,0.45\}$ with 2 seconds with probability distribution $\{0.1,0.1,0.1,0.7\}$. Suppose we are using a code with lengths $\{3,3,2,1\}$. What is the average bit rate at the output of the coder?