UCSC Computer Engineering
CE 107: Probability and Statistics for Engineers
(formerly Introduction to Stochastic Methods of System Analysis)
Fall 2010

Instructor: Alexandre Brandwajn
Office: UCSC Campus, Engineering-2 223
E-mail: alexb@soe.ucsc.edu
Phone: 831-459 4023

Office hours: Tu 2:30-3:30 pm UCSC Main Campus & by appointment

TAs: Elinor Velasquez (senior TA), e-mail: elinor@soe.ucsc.edu
 Lemony Dritsoula, e-mail: lenia@soe.ucsc.edu

Sections/Office hours: to be announced

Grade policy: 60% examinations, 40% homework; failing grade: below 50% in either component

Planned: 3 examinations (no final), frequent homework assignments

Projected course outline

I. Introductory Notions
 probabilistic phenomena, relationship to experiments, intuitive notions
 event, random variable
 statistics, inference from limited data and outcomes of repeated experiments
 random experiment, sample space, sample points
 probability measures, probability axioms

II. Conditional Probability
 motivation, law of total probability, independence of events
 Bayes’ theorem
 application to reliability

III. Random Variables & Transforms
 distribution function, pmf, pdf (discrete/continuous random variables)
 characterization, moments
 jointly distributed random variables, covariance, independence
 generation of pseudo-random variates for simulation experiments
 sums of independent random variables, convolution
 conditional moments
 transform methods, moment generating function, generating function
 sums of independent random variables
 general inequalities and applications, bounds, application to design assessment
 relative frequency and probability, law of large numbers, precision of measurements

IV. Selected Probability Distributions & Applications, Statistics
 discrete, continuous
 negative exponential random variable
 gaussian random variable, Central Limit Theorem, precision of repeated measurements
 applications in statistics, performance evaluation and reliability

V. Elements of Stochastic Processes
 basic notions, examples
 counting, Bernoulli, Poisson process
 birth and death process, equilibrium, steady state
 Markov chains, state classification, ergodicity, applications

The projected course outline is only an initial plan. The actual number, order and extent of subjects covered may vary depending on a number of factors including, but not limited to, class progress.

Cheating and dishonesty are not considered acceptable.