Today's quiz:

1. \[\sum_{k=0}^{n} \frac{n!}{k!(n-k)!} a^k b^{n-k} = ? \] Given \(a = 7 \), \(b = 3 \), \(n = 6 \)

2. \(q' = \frac{9}{5} \) \(g(t) = \) \# of animals (thousands) in years
 a) solve equation
 b) For \(t = 0 \), 1000 animals, find expression for \(g(t) \)
 c) After how many years, how more than 4000?

This quiz is graded but doesn't count towards your grade in this class.

Lecture:

- Phone system - how many lines? How to design the proper capacity?
- Cabs in a city? How many people will ask for a cab? How many licenses to issue?
- How many hospital beds to have?
- \# of applications supported? How to dimension system
- Idealized probabilistic model:
such that I give all possible outcomes and their probabilities.

Must calibrate with reality through limited data. Enter the realm of statistics.

2 possible outcomes: successful recovery or abortive error.

This happens with probability \(c \) and \(1 - c \). Estimate \(c \).

Generate \(N \) errors. Look how many errors successfully recovered = \(n \).

As \(N \) increases, \(c \) tends to \(\frac{n}{N} \).

Formally, \(\lim_{N \to \infty} \text{Prob} \left\{ \left| \frac{n}{N} - c \right| > \varepsilon \right\} = 0 \)

means \(c \) “converges in probability” to \(\frac{n}{N} \).

Can never guarantee.
Coin, Throw it. Two possible outcomes
fair coin = 50% heads, 50% tails

Different possible outcomes have a long-run relative frequency that is constant.
means
in the long run, outcome is constant.

Example of events:

1. event is

 {an arbitrary customer finds all servers busy}

2. event = {an arbitrary customer must wait > x seconds for services}

3. event = {number of waiting customers at arbitrary instant is j}

\[Q = \text{queue length} \]
\[= \text{number of waiting customers} \]

\[N = \text{number of customers in an s-server system} \]
(quad core \(s = 4 \))

\[W = \text{waiting time of arbitrary customer until they get served} \]
rewrite event examples:

1. \(\mathbb{P}(N > s) \) \quad probability \ that \ \mathbb{N} \geq s \ of \ occurrence

2. \(\mathbb{P}(W > x) \)

3. \(\mathbb{P}(Q = j) \)

Capital letters are random variable is a device that represents events in terms of numerical values. \(X \) assigns numerical values to events; mapping of event to a value.

Coin tossing

\{ head \} \ \{ tail \} \ two \ possible \ events

\[
\begin{align*}
\text{head} & \rightarrow 1 \\
\text{tail} & \rightarrow 0
\end{align*}
\]

toss coin \(n \) times

\(S_n = \) \# of heads in \(n \) tosses

\[
X_j = \begin{cases}
1 & \text{head} \\
0 & \text{tail}
\end{cases}
\]

\[
S_n = \sum_{j=1}^{n} X_j
\]