Problem 4.1.2

\[F_V(v) = \begin{cases}
0 & v < -5 \\
c(v+5)^2 & -5 \leq v < 7 \\
1 & v \geq 7
\end{cases} \]

(a) For \(V \) to be a continuous random variable, \(F_V(v) \) must be a continuous function. This occurs if we choose \(c \) such that \(F_V(v) \) doesn’t have a discontinuity at \(v = 7 \). We meet this requirement if \(c(7+5)^2 = 1 \). This implies \(c = 1/144 \).

(b) \[P[V > 4] = 1 - P[V \leq 4] = 1 - F_V(4) = 1 - 81/144 = 63/144 \]

(c) \[P[-3 < V \leq 0] = F_V(0) - F_V(-3) = 25/144 - 4/144 = 21/144 \]

(d) Since \(0 \leq F_V(v) \leq 1 \) and since \(F_V(v) \) is a nondecreasing function, it must be that \(-5 \leq a \leq 7 \). In this range,

\[P[V > a] = 1 - F_V(a) = 1 - (a+5)^2/144 = 2/3 \]

The unique solution in the range \(-5 \leq a \leq 7 \) is \(a = 4\sqrt{3} - 5 = 1.928 \).

Problem 4.2.1

\[f_X(x) = \begin{cases}
 cx & 0 \leq x \leq 2 \\
0 & \text{otherwise}
\end{cases} \]

(a) From the above PDF we can determine the value of \(c \) by integrating the PDF and setting it equal to 1.

\[\int_0^2 cx \, dx = 2c = 1 \]

Therefore \(c = 1/2 \).

(b) \[P[0 \leq X \leq 1] = \int_0^1 x \, dx = 1/4 \]

(c) \[P[-1/2 \leq X \leq 1/2] = \int_{-1/2}^{1/2} \frac{x}{2} \, dx = 1/16 \]

(d) The CDF of \(X \) is found by integrating the PDF from 0 to \(x \).

\[F_X(x) = \int_0^x f_X(x') \, dx' = \begin{cases}
0 & x < 0 \\
x^2/4 & 0 \leq x \leq 2 \\
1 & x > 2
\end{cases} \]
Problem 4.3.1

\[f_X(x) = \begin{cases}
1/4 & -1 \leq x \leq 3 \\
0 & \text{otherwise}
\end{cases} \]

We recognize that \(X \) is a uniform random variable from \([-1, 3]\).

(a) \(E[X] = 1 \) and \(\text{Var}[X] = \frac{(3+1)^2}{12} = 4/3 \).

(b) The new random variable \(Y \) is defined as \(Y = h(X) = X^2 \). Therefore

\[h(E[X]) = h(1) = 1 \]

and

\[E[h(X)] = E[X^2] = \text{Var}[X] + E[X]^2 = 4/3 + 1 = 7/3 \]

Finally

\[E[Y] = E[h(X)] = E[X^2] = 7/3 \]
\[\text{Var}[Y] = E[X^4] - E[X^2]^2 = \int_{-1}^{3} x^4 \, dx - \frac{49}{9} = \frac{61}{5} - \frac{49}{9} \]

Problem 4.3.4

(a) We can find the expected value of \(X \) by direct integration of the given PDF.

\[f_Y(y) = \begin{cases}
y/2 & 0 \leq y \leq 2 \\
0 & \text{otherwise}
\end{cases} \]

The expectation is

\[E[Y] = \int_{0}^{2} \frac{y^2}{2} \, dy = 4/3 \]

(b)

\[E[Y^2] = \int_{0}^{2} \frac{y^3}{2} \, dy = 2 \]
\[\text{Var}[Y] = E[Y^2] - E[Y]^2 = 2 - (4/3)^2 = 2/9 \]