Problem 2.4.1
Using the CDF given in the problem statement we find that
(a) \(P[Y < 1] = 0 \)
(b) \(P[Y \leq 1] = 1/4 \)
(c) \(P[Y > 2] = 1 - P[Y \leq 2] = 1 - 1/2 = 1/2 \)
(d) \(P[Y \geq 2] = 1 - P[Y < 2] = 1 - 1/4 = 3/4 \)
(e) \(P[Y = 1] = 1/4 \)
(f) \(P[Y = 3] = 1/2 \)
(g) From the staircase CDF of Problem 2.4.1, we see that \(Y \) is a discrete random variable. The
jumps in the CDF occur at the values that \(Y \) can take on. The height of each jump equals
the probability of that value. The PMF of \(Y \) is
\[
P_Y(y) = \begin{cases}
1/4 & y = 1 \\
1/4 & y = 2 \\
1/2 & y = 3 \\
0 & \text{otherwise}
\end{cases}
\]

Problem 2.4.3
(a) Similar to the previous problem, the graph of the CDF is shown below.
\[
F_X(x) = \begin{cases}
0 & x < -3 \\
0.4 & -3 \leq x < 5 \\
0.8 & 5 \leq x < 7 \\
1 & x \geq 7
\end{cases}
\]

(b) The corresponding PMF of \(X \) is
\[
P_X(x) = \begin{cases}
0.4 & x = -3 \\
0.4 & x = 5 \\
0.2 & x = 7 \\
0 & \text{otherwise}
\end{cases}
\]
Problem 2.5.3

the PMF of Y is

$$P_Y(y) = \begin{cases}
1/4 & y = 1 \\
1/4 & y = 2 \\
1/2 & y = 3 \\
0 & \text{otherwise}
\end{cases}$$

The expected value of Y is

$$E[Y] = \sum_y yP_Y(y) = 1(1/4) + 2(1/4) + 3(1/2) = 9/4$$

Problem 2.5.5

Problem 2.4.3, the PMF of X is

$$P_X(x) = \begin{cases}
0.4 & x = -3 \\
0.4 & x = 5 \\
0.2 & x = 7 \\
0 & \text{otherwise}
\end{cases}$$

The expected value of X is

$$E[X] = \sum_x xP_X(x) = -3(0.4) + 5(0.4) + 7(0.2) = 2.2$$

Problem 2.6.1

the PMF of Y is

$$P_Y(y) = \begin{cases}
1/4 & y = 1 \\
1/4 & y = 2 \\
1/2 & y = 3 \\
0 & \text{otherwise}
\end{cases}$$

(a) Since Y has range $S_Y = \{1, 2, 3\}$, the range of $U = Y^2$ is $S_U = \{1, 4, 9\}$. The PMF of U can be found by observing that

$$P[U = u] = P[Y^2 = u] = P[Y = \sqrt{u}] + P[Y = -\sqrt{u}]$$

Since Y is never negative, $P_U(u) = P_Y(\sqrt{u})$. Hence,

$$P_U(1) = P_Y(1) = 1/4 \quad P_U(4) = P_Y(2) = 1/4 \quad P_U(9) = P_Y(3) = 1/2$$

For all other values of u, $P_U(u) = 0$. The complete expression for the PMF of U is

$$P_U(u) = \begin{cases}
1/4 & u = 1 \\
1/4 & u = 4 \\
1/2 & u = 9 \\
0 & \text{otherwise}
\end{cases}$$
(b) From the PMF, it is straightforward to write down the CDF.

\[
F_U(u) = \begin{cases}
0 & u < 1 \\
1/4 & 1 \leq u < 4 \\
1/2 & 4 \leq u < 9 \\
1 & u \geq 9
\end{cases}
\]

(c) From Definition 2.14, the expected value of \(U \) is

\[
E[U] = \sum_u u P_U(u) = 1(1/4) + 4(1/4) + 9(1/2) = 5.75
\]

From Theorem 2.10, we can calculate the expected value of \(U \) as

\[
E[U] = E[Y^2] = \sum_y y^2 P_Y(y) = 1^2 (1/4) + 2^2 (1/4) + 3^2 (1/2) = 5.75
\]

As we expect, both methods yield the same answer.

Problem 2.6.3

Problem 2.4.3, the PMF of \(X \) is

\[
P_X(x) = \begin{cases}
0.4 & x = -3 \\
0.4 & x = 5 \\
0.2 & x = 7 \\
0 & \text{otherwise}
\end{cases}
\]

(a) The PMF of \(W = -X \) satisfies

\[
P_W(w) = P[-X = w] = P_X(-w)
\]

This implies

\[
P_W(-7) = P_X(7) = 0.2 \quad P_W(-5) = P_X(5) = 0.4 \quad P_W(3) = P_X(-3) = 0.4
\]

The complete PMF for \(W \) is

\[
P_W(w) = \begin{cases}
0.2 & w = -7 \\
0.4 & w = -5 \\
0.4 & w = 3 \\
0 & \text{otherwise}
\end{cases}
\]

(b) From the PMF, the CDF of \(W \) is

\[
F_W(w) = \begin{cases}
0 & w < -7 \\
0.2 & -7 \leq w < -5 \\
0.6 & -5 \leq w < 3 \\
1 & w \geq 3
\end{cases}
\]

(c) From the PMF, \(W \) has expected value

\[
E[W] = \sum_w w P_W(w) = -7(0.2) + -5(0.4) + 3(0.4) = -2.2
\]
Problem 2.7.2
Whether a lottery ticket is a winner is a Bernoulli trial with a success probability of 0.001. If we buy one every day for 50 years for a total of $50 \cdot 365 = 18250$ tickets, then the number of winning tickets T is a binomial random variable with mean

$$E[T] = 18250(0.001) = 18.25$$

Since each winning ticket grosses $1000, the revenue we collect over 50 years is $R = 1000T$ dollars. The expected revenue is

$$E[R] = 1000E[T] = 18250$$

But buying a lottery ticket everyday for 50 years, at $2.00 a pop isn’t cheap and will cost us a total of $18250 \cdot 2 = 36500$. Our net profit is then $Q = R - 36500$ and the result of our loyal 50 year patronage of the lottery system, is disappointing expected loss of

$$E[Q] = E[R] - 36500 = -18250$$

Problem 2.8.1
Given the following PMF

$$P_N(n) = \begin{cases} 0.2 & n = 0 \\ 0.7 & n = 1 \\ 0.1 & n = 2 \\ 0 & \text{otherwise} \end{cases}$$

(a) $E[N] = (0.2)0 + (0.7)1 + (0.1)2 = 0.9$

(b) $E[N^2] = (0.2)0^2 + (0.7)1^2 + (0.1)2^2 = 1.1$

(c) $\text{Var}[N] = E[N^2] - E[N]^2 = 1.1 - (0.9)^2 = 0.29$

(d) $\sigma_N = \sqrt{\text{Var}[N]} = \sqrt{0.29}$

Problem 2.8.7
For $Y = aX + b$, we wish to show that $\text{Var}[Y] = a^2 \text{Var}[X]$. We begin by noting that Theorem 2.12 says that $E[aX + b] = aE[X] + b$. Hence, by the definition of variance,

$$\text{Var}[Y] = E[(aX + b - (aE[X] + b))^2] = E[a^2(X - E[X])^2] = a^2E[(X - E[X])^2]$$

Since $E[(X - E[X])^2] = \text{Var}[X]$, the assertion is proved.

Problem 2.9.1
From the solution to Problem 2.4.1, the PMF of Y is

$$P_Y(y) = \begin{cases} 1/4 & y = 1 \\ 1/4 & y = 2 \\ 1/2 & y = 3 \\ 0 & \text{otherwise} \end{cases}$$
The probability of the event $B = \{Y < 3\}$ is $P[B] = 1 - P[Y = 3] = 1/2$. From Theorem 2.19, the conditional PMF of Y given B is

$$P_{Y|B}(y) = \begin{cases} \frac{P_{Y}(y)}{P[B]} & y \in B \\ 0 & \text{otherwise} \end{cases} = \begin{cases} 1/2 & y = 1 \\ 1/2 & y = 2 \\ 0 & \text{otherwise} \end{cases}$$

The conditional first and second moments of Y are

$$E[Y|B] = \sum_{y} y P_{Y|B}(y) = 1(1/2) + 2(1/2) = 3/2$$

$$E[Y^2|B] = \sum_{y} y^2 P_{Y|B}(y) = 1^2(1/2) + 2^2(1/2) = 5/2$$

The conditional variance of Y is

$$\text{Var}[Y|B] = E[Y^2|B] - (E[Y|B])^2 = \frac{5}{2} - \left(\frac{3}{2}\right)^2 = \frac{5}{2} - \frac{9}{4} = \frac{1}{4}$$