TCP - Introduction

• The Internet Protocol (IP) provides unreliable datagram service between hosts
• The Transmission Control Protocol (TCP) provides reliable data delivery
 – It uses IP for datagram delivery
 – Compensates for loss, delay, duplication and similar problems in Internet components

Features of TCP

• Connection oriented: An application requests a “connection” to destination and uses connection to transfer data
 – IP does not use “connections” - each datagram is sent independently!
• Point-to-point: A TCP connection has two endpoints (no broadcast/multicast)
• Reliability: TCP guarantees that data will be delivered without loss, duplication or transmission errors
Features of TCP (cont’d)

- **Full duplex**: Endpoints can exchange data in both directions simultaneously
- **Reliable connection startup**: TCP guarantees reliable, synchronized startup between endpoints (using “three-way handshake”)
- **Gracefully connection shutdown**: TCP guarantees delivery of all data after endpoint shutdown

Delivering TCP

- **TCP segments travel in IP datagrams**

 ![Diagram of TCP segment, IP header, and Payload]

- Internet routers only look at IP header to forward datagrams
- Note: each segment contains a sequence number
Delivering TCP

- TCP at destination interprets TCP messages

TCP and Reliable Delivery

- TCP provides reliable delivery, recovering from:
 - Lost packets
 - Duplicate packers
 - Delayed packers
 - Corrupted data
 - Transmission speed mismatches
 - Congestion
 - System reboots
Lost Packets

- Recipient sends acknowledgment control message (ACK) to sender to verify successful receipt of data
 - ACKs usually are carried onboard other TCP packets
 - However, even if an application has nothing to transmit, it must transmit acknowledgment packets for each packet it receives
- Thus, for each packet sent, a host expects to receive an acknowledgment, which ensures that the packet did not get lost
 - What if the packet or the acknowledgment get lost?

Lost Packets (cont’d)

- Retransmission timer
 - When a data segment is sent, a timer is started
 - If the segment is acknowledged before the timer expires, the timer is stopped and reset
 - Otherwise, the segment is retransmitted (and the timer is reset and started again)
- The choice of the timeout is critical!
 - If timeout is too long: overall throughput may be reduced (always waiting for acknowledgments)
 - If timeout is too short: too many packets get retransmitted (may increase network congestion)
Lost Packets (cont’d)

• IMPORTANT: packet retransmission (especially if it has to be carried out on an end-to-end basis) significantly increases latency (delay)
 • For real-time video or audio transmission, delay is a more important performance issue than error rate
 • Thus, in many cases it is preferable to forget the error and simply work with the received data stream

Lost Packets - Example
Flow Control

- Flow control is necessary when a computer in the network transmits data too fast for another computer to receive it
 - E.g., a fast server trying to send 1Gb/s data to a small PC
 - Without some form of control, some data will get lost
- Flow control requires some form of feedback from the receiving computer
 - The sender must be able to realize that it is sending data too fast!

TCP Sliding Window

- TCP uses the ACK packets together with the sliding window mechanism
Congestion Control

• When too many packets are present in a part of a network, we have congestion
 – Performance degrades!

• Reasons for congestion:
 – E.g., all of a sudden, streams of packets arrive on 3 or 4 input lines of a router, and they all need the same output line. A queue will build up; if there is insufficient memory, the queue fills it up, and packets will be lost
Congestion (cont’d)

- Network with 1 Mb/s lines and 1000 computers, half of which are trying to transfer files at 100 Kb/s to the other half
 - The total offered traffic exceeds what the network can handle (congestion)
- Congestion collapse:
 - When congestion occurs, packets get dropped
 - Due to packet loss, packets get retransmitted
 - Congestions gets worse and worse!

TCP and Congestion Control

- TCP has a form of congestion control
- Interprets packet loss as an indicator of congestion
 - When it senses packet loss, it slows down the rate of packet transmission
 - When packets are received correctly, sends packets faster
 - Still within the limits of the sliding window
TCP and UDP

- **TCP** provides end-to-end communication. It takes care of **reliable, error-free transfer** of data, and **in-sequence delivery**

- **UDP** has **less overhead** compared to TCP, but **does not guarantee transfers**
 - TCP is preferred to transfer files
 - UDP is preferred to transfer audio/video streams
 - In real-time streaming, we cannot afford the delay consequent to packet retransmission

- Both protocols support **multiplexing**, i.e. they allow several distinct streams of data between two hosts