Exercise Hypothesis: \(\exists x (P(x) \land TQ(x)) \)
\(\forall x (P(x) \rightarrow R(x)) \)

Conclusion: \(\exists x (R(x) \land TQ(x)) \)

1. \(\exists x (P(x) \land TQ(x)) \) \hspace{1cm} \text{Hypothesis}
2. \(\forall x (P(x) \rightarrow R(x)) \) \hspace{1cm} \text{Hypothesis}
3. \(P(a) \land TQ(a) \) \hspace{1cm} \text{Exist. Inst. 1}
4. \(P(a) \) \hspace{1cm} \text{Simp. 3}
5. \(P(a) \rightarrow R(a) \) \hspace{1cm} \text{Univ. Inst. 2}
6. \(R(a) \) \hspace{1cm} \text{Monos. and Simp. 3}
7. \(TQ(a) \) \hspace{1cm} \text{Conjunction 6, 7}
8. \(R(a) \land TQ(a) \) \hspace{1cm} \text{Exist. Gen. 8}
9. \(\exists x (R(x) \land TQ(x)) \)

Note: Scope of quantifiers

\(\forall x (P(x) \rightarrow Q(x)) \neq \forall x P(x) \rightarrow \forall x Q(x) \)

Example:
\(U = \text{All People} \)
\(P(x) = \text{'x has green eyes'} \)
\(Q(x) = \text{'x is so feet tall'} \)

\(\forall x (P(x) \rightarrow Q(x)) \) is **false**
\(\forall x P(x) \rightarrow \forall x Q(x) \) is **true** (why?)
In order to illustrate some methods of proof we first make a few definitions concerning the integers. We denote by \(\mathbb{Z} \) the set of integers.

Given \(a, b \in \mathbb{Z} \) with \(a \neq 0 \), we say \(a \) divides \(b \) iff \(b = ak \) for some \(k \in \mathbb{Z} \). Notation: \(a \mid b \).

\(n \) is called even if \(2 \mid n \), and odd otherwise. Thus \(n \) is even iff \(\exists k : n = 2k \) and \(n \) is odd iff \(\exists k : n = 2k + 1 \).

Direct Proof of \(\quad \Rightarrow \)

Assume \(P \) is true. Then use valid rules of inference and previously proved theorems to show \(Q \) is true.

Ex. If \(n \) is odd then \(n^2 \) is odd.

Proof:

Assume \(n \) is odd. Then \(n = 2k + 1 \) for some integer \(k \). Thus \(n^2 = (2k + 1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1 \). Since \(2k^2 + 2k \) is itself an integer, this shows \(n^2 \) is also odd, as claimed.
Indirect Proof of $P \rightarrow q$

Prove the contrapositive statement $\neg q \rightarrow \neg P$, usually directly.

Ex. if $5n+4$ is odd then n is odd.

Proof

Assume n is even. Then $n = 2k$ for some integer k. Thus $5n + 4 = 5(2k) + 4 = 2(5k + 2)$. Since $5k + 2$ is itself an integer, this shows $5n + 4$ is also even. We've shown that if n is even then $5n + 4$ is even. Hence if $5n + 4$ is odd, then n must be odd.

A real number x is called **rational** if $x = a/b$ where $a, b \in \mathbb{Z}$, $b \neq 0$.

A real number which is not rational is called **irrational**.

Let \mathbb{R} denote the set of real numbers, \mathbb{Q} the set of rational numbers, and $\mathbb{R} - \mathbb{Q}$ the set of irrational numbers.
Proof by Contradiction of P

Prove the implication $7P \Rightarrow 9$, where 9 is some contradiction. Since 9 is necessarily false, the only way $7P \Rightarrow 9$ could be true is if $7P$ were false, i.e., P is true. Often the contradiction 9 is of the form $9 = \text{RATN}$ for some proposition R.

Ex. $\sqrt{2}$ is irrational.

Proof:

Assume that $\sqrt{2}$ is rational. Then there exist $a, b \in \mathbb{Z}$, $b \neq 0$ such that

$$\sqrt{2} = \frac{a}{b}$$

Now if a and b have any common factors, we may cancel them top and bottom. Thus we may assume a and b have no factors in common to begin with.

Thus $2 = \frac{a^2}{b^2}$, $a^2 = 2b^2$, and a^2 is even. This implies a is even. (Recall we showed n odd $\Rightarrow n^2$ odd which proves indirectly that n^2 even $\Rightarrow n$ even.)
Thus \(a = 2k \) for some \(k \in \mathbb{Z} \) and hence \(2b^2 = a^2 = (2k)^2 = 4k^2 \), \(b^2 = 2k^2 \). Therefore \(b^2 \) is even and so \(b \) is even.

Now we have that \(a \) and \(b \) have no common factors, and yet they are both even. This contradiction shows that our original assumption was false, i.e. \(\sqrt{2} \) must be irrational.

Read: Vacuous and Trivial Proofs P. 64
Proof by Cases P. 67

Often we wish to prove a proposition of the form \(\exists x \ P(x) \) where \(P(x) \) is some propositional function. These are called existence proofs.

Constructive Existence Proof. Find, construct, or display an element \(a \) in the universe for which \(P(a) \) is true.

Non-Constructive Existence Proof. Usually proceeds by contradiction.
Exercise: There exist irrational numbers x and y such that x^y is rational.

Proof:
Either $\sqrt{2}$ is rational or it is not. If it is, we are done for then $x = \sqrt{2}$, $y = \sqrt{2}$ are irrational while x^y is rational.

If $\sqrt{2}$ is irrational, take $x = \sqrt{2}$ and $y = \sqrt{2}$. Again we have x, y irrational with

$$x = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{\sqrt{2} \cdot \sqrt{2}} = \sqrt{2}^2 = 2$$

which is rational. \[\Box\]

Note: We never produce a pair x, y with x, y irrational and x^y rational. This is a non-constructive existence proof.

Read: Mistakes in Proofs p. 71
1.6) SETS

Defn

A **set** is any (unordered) collection of objects. The objects belonging to a set are called its **members** or **elements**.

This intuitively obvious definition leads directly to a paradox. See Problem 30, p. 86.

Write \(x \in S \) to say \(x \) is a member of set \(S \).

We can specify a set by listing its members between braces \(\{ \ldots \} \):

\[
\{1, 2, 3\}, \{1, 2, 3, \ldots, 10\}, \{1, 2, 3, \ldots\}
\]

Some important sets:

\(\mathbb{N} = \{0, 1, 2, \ldots\} \) \quad **Natural numbers**

\(\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\} \) \quad **Integers**

\(\mathbb{Z}^+ = \{1, 2, 3, \ldots\} \) \quad **Positive integers**

\(\mathbb{Q} = \{ \text{rational numbers} \} \)

\(\mathbb{R} = \{ \text{real numbers} \} \)

\(\mathbb{C} = \{ \text{complex numbers} \} \)
Two sets are considered equal if they contain the same members. Order and repetition in the listing are irrelevant.

\[\{1, 2, 3\} = \{3, 1, 2\} = \{1, 1, 2, 2, 3, 3\} \]

We can also specify a set using set builder notation. Let \(P(x) \) be a propositional function with universe \(U \). The set of all \(x \in U \) such that \(P(x) \) is true is denoted:

\[\{ x \in U \mid P(x) \} \]

or

\[\{ x \mid P(x) \} \]

if the universe is understood.

\[\{ x \in \mathbb{R} \mid x \leq 8 \} \]

\[\{ x \in \mathbb{Z} \mid x \leq 8 \} \]

\(\mathbb{Z}^+ = \{ n \in \mathbb{Z} \mid n > 0 \} \)

\(\mathbb{Q} = \{ x \in \mathbb{R} \mid \exists a, b \in \mathbb{Z} : b \neq 0 \land x = \frac{a}{b} \} \)
DEFINITION: THE EMPTY SET is the set with no members: \(\emptyset = \{ \} \).

DEFINITION: WE say \(A \) is a \textit{subset} of \(B \) if every element of \(A \) is also an element of \(B \).

\[\forall x \ (x \in A \rightarrow x \in B) \]

\textbf{Notation:} \(A \subseteq B \)

WE say \(A \) is a \textit{proper subset} of \(B \) if \(A \subseteq B \) but \(A \neq B \).

\textbf{Notation:} \(A \subsetneq B \)

\textbf{Remark:} \(\subseteq, \subsetneq, \forall, \subseteq \)

\textbf{Observe that for any set} \(S \):

\(\emptyset \subseteq S \): \(\forall x \ (x \in \emptyset \rightarrow x \in S) \) \(\iff \) \(\text{true} \) \textit{tautology}

\(S \subseteq S \): \(\forall x \ (x \in S \rightarrow x \in S) \) \(\iff \) \(\text{true} \) \textit{tautology}

\textbf{Remark:} 'contains!'
Ex. \(S = \{1, 2\} \)

The subsets of \(S \) are

\[\emptyset, \{1\}, \{2\}, \{1, 2\} \]

The set of subsets of \(S \) is

\[\{ \emptyset, \{1\}, \{2\}, \{1, 2\} \} \]

Definition:
The set of all subsets of \(S \) is called the \underline{power set} of \(S \), and is denoted \(\mathcal{P}(S) \).

Definition:
If \(S \) has \(n \) distinct members (\(n \in \mathbb{N} \)) we say \(S \) is \underline{finite}, and that \(n \) is the \underline{cardinality} of \(S \).

Notation: \(|S| = n \)

If \(S \) is not finite it is called \underline{infinite}.

Ex. \(\mathbb{N}, \mathbb{Z}^+, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C} \) are infinite sets.