linear 2nd order homogeneous rec. relation with coeff. coeff.

\[x_n = c_1 x_{n-1} + c_2 x_{n-2} \quad (n \geq 0) \]

Then (superposition principle)

if \((a_n)\) and \((b_n)\) are solutions to \((1)\), then so is \((\alpha a_n + \beta b_n)\)

for any \(\alpha, \beta \in \mathbb{R}\).

Proof.

Let \(x_n = \alpha a_n + \beta b_n\). Then
\[2L_2 \Delta x = c_1 x_{n-1} + c_2 x_{n-2} \]

\[= c_1 (\alpha a_{n-1} + \beta b_{n-1}) + c_2 (\alpha a_{n-2} + \beta b_{n-2}) \]

\[= \alpha (c_1 a_{n-1} + c_2 a_{n-2}) + \beta (c_1 b_{n-1} + c_2 b_{n-2}) \]

\[= \alpha \Delta x_n + \beta \Delta b_n \]

\[= \Delta x_n = L \Delta \xi \]

To solve (1), guess a solution of the form \(x_n = r^n \). Substitute into (1) to obtain

\[r^n = c_1 r^{n-1} + c_2 r^{n-2} \]

divide both sides by \(r^{n-2} \).
(2) \[r^2 = c_1 r + c_2 \]

or

(3) \[r^2 - c_1 r - c_2 = 0 \]

(2) or (3) is called the characteristic equation for (1).

Thm

If \(r_0 \) is any root of the characteristic eqn (2) or (3), then \(x_n = r_0^n \) is a solution to (1).

Proof: exercise or see book.
The key to finding solution to (11) is finding roots of quadratic (3):

\[r_1 = \frac{c_1 + \sqrt{c_1^2 + 4c_2}}{2}, \quad r_2 = \frac{c_1 - \sqrt{c_1^2 + 4c_2}}{2} \]

There are 3 cases:

(i) \(r_1 \neq r_2 \) are distinct real \((c_1^2 + 4c_2 > 0) \)

(ii) \(r_1 = r_2 \) repeated real roots \((c_1^2 + 4c_2 = 0) \)

(iii) \(r_1 \neq r_2 \) complex conjugate roots \((c_1^2 + 4c_2 < 0) \)

We consider case (i) only. (see text for other cases.)
Ex: \[a_n = 5a_{n-1} - 6a_{n-2} \]
\[a_0 = 1 \]
\[a_1 = 0 \]

Char eqn: \(r^2 - 5r + 6 = 0 \)

\((r-2)(r-3) = 0\)

\(r_1 = 2, r_2 = 3 \)

Thm: If \(r_1, r_2 \) are distinct real roots of \((2) \), then every solution to \((1)\) is of the form

\[x_n = \alpha r_1^n + \beta r_2^n \]

Proof: See text.
Returning to example...

\[a_n = \alpha 2^n + \beta 3^n \]

to find \(\alpha, \beta \) use init. cond.

\[
\begin{align*}
\alpha 2^0 + \beta 3^0 &= 1 \\
\alpha 2^1 + \beta 3^1 &= 0
\end{align*}
\]

\[
\begin{align*}
\alpha + \beta &= 1 \\
2\alpha + 3\beta &= 0 \\
2\alpha + 2\beta &= 2
\end{align*}
\]

\[\beta = -2 \Rightarrow \alpha = 3 \]

\[
\therefore a_n = 3 \cdot 2^n - 2 \cdot 3^n
\]
Ex. \(x_n = 4x_{n-2} \), \(x_0 = 0 \), \(x_1 = 4 \)

** Chew eqn: \(r^2 = 4 \)**

\[
ger^2 - 4 = 0
\]

\[
(r - 2)(r + 2) = 0
\]

\[
r_1 = 2, \quad r_2 = -2
\]

\[
\therefore \quad x_n = \alpha 2^n + \beta (-2)^n
\]

\[
\begin{cases}
\alpha + \beta = 0 \\
-2\alpha - 2\beta = 4
\end{cases} \quad \Rightarrow \begin{cases}
\alpha + \beta = 0 \\
2\alpha = 2 \quad \Rightarrow \alpha = 1
\end{cases}
\]

\[
\therefore \quad \beta = -1
\]

\[
\therefore \quad x_n = 2^n + (-1)(-2)^n
\]

\[
\boxed{x_n = 2^n - (-2)^n
\]

\[
x_n = 2^n - (-1)^n 2^n
\]
\[x_n = 2^n \left(1 - (-1)^n \right) \]

\[
\begin{align*}
x_n = & \begin{cases}
0 & \text{n even} \\
\frac{n+1}{2} & \text{n odd}
\end{cases}
\end{align*}
\]

Ex. (Fibonacci)

\[
\begin{cases}
F_n = F_{n-1} + F_{n-2} & \text{n \geq 2} \\
F_0 = 0 \\
F_1 = 1
\end{cases}
\]

Char. eqn.: \[r^2 = r + 1 \]

\[r^2 - r - 1 = 0 \]

\[r_1 = \frac{1 + \sqrt{5}}{2}, \quad r_2 = \frac{1 - \sqrt{5}}{2} \]

\[\phi \]

Golden Ratio.
\[F_n = \alpha \left(\frac{1 + \sqrt{5}}{2} \right)^n + \beta \left(\frac{1 - \sqrt{5}}{2} \right)^n \]

\[
\begin{align*}
\alpha + \beta &= 0 \\
\alpha \left(\frac{1 + \sqrt{5}}{2} \right) + \beta \left(\frac{1 - \sqrt{5}}{2} \right) &= 1 \\
\sqrt{5} (\alpha + \beta) + \sqrt{5} (\alpha - \beta) &= 2
\end{align*}
\]

\[
\begin{align*}
\alpha + \beta &= 0 \quad \Rightarrow \quad \beta = -\alpha \\
\alpha - \beta &= \frac{2}{\sqrt{5}} \\
\end{align*}
\]

\[2\alpha = \frac{2}{\sqrt{5}} \quad \Rightarrow \quad \alpha = \frac{1}{\sqrt{5}} \quad \Rightarrow \quad \beta = -\frac{1}{\sqrt{5}} \]

\[F_n = \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1 - \sqrt{5}}{2} \right)^n \]

\[F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right] \]
since \(\left(\frac{1 - \sqrt{5}}{2} \right)^n \to 0 \) as \(n \to \infty \),

we have

\[F_n = \text{nearest int to} \quad \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)^n \]

for sufficiently large \(n \).
Ex.

In how many ways can a 2xn rectangular walkway be tiled using only 1x1 and 2x2 tiles?

Walk: \[\begin{array}{cccc|c}
1 & 1 & 1 & 1 & \vdots \\
\hline
1 & 1 & 1 & 1 & \ddots \\
\hline
1 & 1 & 1 & 1 & 1 \\
\end{array} \]

Tiles: \[\begin{array}{c}
1 \times 2 \\
2 \times 2 \\
\end{array} \]

There are 3 mutually exclusive ways such a walk can end.

Let \(A_n \) = \# of such tilings.
1.)
\[
\text{An-1 ways}
\]

\[
\text{n-1}
\]

2.)
\[
\text{An-2}
\]

\[
\text{n-2}
\]

3.)
\[
\text{An-2}
\]

\[
\text{n-2}
\]

By the sum rule:

\[
A_n = A_{n-1} + 2A_{n-2}
\]

\[
\begin{cases}
A_0 = 1 \\
A_1 = 1 \\
A_2 = 3
\end{cases}
\]
char eqn. : \(r^2 = 1 + 2 \)

\[\therefore r^2 - r - 2 = 0 \]

\[(r + 1)(r - 2) = 0 \]

\[r_1 = -1, \quad r_2 = 2 \]

\[A_n = \alpha (-1)^n + \beta 2^n \]

\[
\begin{align*}
\alpha + \beta &= 1 \\
-\alpha + 2\beta &= 1
\end{align*}
\]

\[\Rightarrow \alpha = 1 - \beta = 1 - \frac{2}{3} = \frac{1}{3} \]

\[3\beta = 2 \Rightarrow \beta = \frac{2}{3} \]

\[\therefore A_n = \frac{1}{3} (-1)^n + \frac{2}{3} (2^n) \]

\[A_n = \frac{1}{3} \left(2^{n+1} + (-1)^n \right) \]
9.1 Relations

Note: the word "relation" is used here in a different sense than in chapter 8.

Let A, B be sets.

Define

A binary relation from A to B in a subset: $R \subseteq A \times B$.

Notation

If $(x, y) \in R$ we say x is related to y by R and write xRy

i.e. xRy iff $(x, y) \in R$.
Also write $x R y$ to mean $(x, y) \in R$.

Example: $A = \{1, 2, 3, 4\}$, $B = \{x, y, z\}$ let $R = \{(1, x), (1, z), (2, y), (2, z), (3, x), (4, y)\}$ is a relation from A to B.

So $2 R y$ but $2 \not{R} x$.

\[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
1 & \rightarrow & 3 & \rightarrow \\
2 & \rightarrow & 4 & \rightarrow \\
3 & \rightarrow & 1 & \rightarrow \\
4 & \rightarrow & 2 & \rightarrow \\
\end{array}\]
Recall if \(A, B \) are finite then
\[|A \times B| = |A| \cdot |B| \]. In this case, the set of relations from \(A \) to \(B \) is finite: \(\mathcal{P}(A \times B) \)

\[|\mathcal{P}(A \times B)| = 2^{|A \times B|} = 2^{\frac{|A| \cdot |B|}{2}} \]

Note: \(\uparrow \quad \uparrow \)
- \(\downarrow \quad \downarrow \)
- domain codomain

Definition: If \(f : A \rightarrow B \), the graph \(\text{graph}(f) \) is

\[\left\{ (x, f(x)) \mid x \in A \right\} \subseteq A \times B \]
Note: \(R \subseteq A \times A \) in the graph of a function \(f: A \rightarrow \mathbb{R} \) if:

for all \(x \in A \), there exists a unique \(y \in B \) such that \(xRy \).

In this case write: \(y = f(x) \).

Def.

A relation on \(A \) is a relation from \(A \) to \(A \): \(R \subseteq A \times A \).

Ex. \(R \subseteq \mathbb{Z} \times \mathbb{Z} \)

\[R = \{ (n, m) \mid n < m \} \]

i.e. "\(R \) equals "\(<""
i.e. \(n \equiv m \pmod{n} \), \(n < m \)

This is the "less-than" relation.

Other relations on \(\mathbb{Z} \):

\[
\begin{align*}
< & \quad \text{less than} \\
\leq & \quad \text{less than or eq.} \\
> & \quad \text{greater than} \\
\geq & \quad \text{greater than or eq.} \\
\equiv & \quad \text{eq.} \\
\equiv_m & \quad \text{congruence mod m}
\end{align*}
\]
1st $\mathbb{Z}^* = \mathbb{Z} - \{0\}$

Relation on \mathbb{Z}^*: \mid divisibility

$\sum (n, m) \mid n \mid m$ "n divides m" $\in \mathbb{Z}^* \times \mathbb{Z}^*$

How many relations on a finite set A?

$|\mathcal{P}(A \times A)| = 2^{4 \times 4|} = 2^{16}$

$\exists x \ A = \{0, 1\}$. There are

$2^2 = 2^4 = 16$

relations on A

Exercise: Write them all.
Properties of Relations

Def: \(R \subseteq A \times A \) is called reflexive iff for all \(x \in A \):

\[xRx \]

Ex. Some reflexive relations on \(\mathbb{Z} \)

\[=, \equiv_m, \leq, \geq \]

Proof: let \(x \in \mathbb{Z} \). must show \(x \equiv_m x \).

i.e. must show \(m \mid (x-x) \), i.e. \(m \mid 0 \).

This is true since \(0 = 0 \cdot m \).
Ex. on \mathbb{Z}^*: is \mid reflexive?

i.e. is $x \mid x$ for all $x \in \mathbb{Z}^*$.

True since $x = 1 \cdot x$.