Section 2.2: Set Operations

The union of sets A, B:

$$A \cup B = \{ x \in U \mid x \in A \lor x \in B \}$$

- **Universe**: set of all objects under discussion

Venn Diagram:

```
  A  B
```

U
The intersection of sets A, B:

$A \cap B = \{x \in U \mid x \in A \land x \in B\}$

We say A and B are disjoint if $A \cap B = \emptyset$.

\[U \]

\[A \]

\[B \]
The set difference \(A - B \):

\[
A - B = \{ x \in U \mid x \in A \land x \notin B \}
\]

\[
\uparrow
\]

\[7(x \in B)\]

\[
B - A = \{ x \in U \mid x \in B \land x \notin A \}
\]

\[
\uparrow
\]

\[7(x \in A)\]
Other notation: $A \setminus B$ for $A - B$

Theorem

If A and B are finite, so are $A \cup B$, $A \cap B$, $A - B$, $B - A$.

Also

\[|A \cup B| = |A| + |B| - |A \cap B| \]

\[|A - B| = |A| - |A \cap B| \]

\[|B - A| = |B| - |A \cap B| \]
(*) is a special case of the
Inclusion-Exclusion Principle (PIE)

The complement of A:

$$
\overline{A} = \mathcal{U} - A = \{x \in \mathcal{U} \mid x \notin A\}
$$

Note: \overline{A} is meaningless unless \mathcal{U} has been specified.
The symmetric difference of A, B:

$A \oplus B = \{ x \in U | x \in A \text{ xor } x \in B \}$

$A \oplus B = (A \cup B) - (A \cap B)$

$= (A - B) \cup (B - A)$
Note: Two sets are equal iff they have exactly the same members: \(A \subseteq B \) and \(B \subseteq A \).

Set Identities (Table 1, p. 130)

Associative laws:

\[A \cup (B \cup C) = (A \cup B) \cup C \]
\[A \cap (B \cap C) = (A \cap B) \cap C \]

Distributive laws:

\[A \cup (B \cap C) = (A \cup B) \cap (A \cup C) \]
\[A \cap (B \cup C) = (A \cap B) \cup (A \cap C) \]
DeMorgan's laws:

\[
\overline{A \cup B} = \overline{A} \cap \overline{B} \\
\overline{A \cap B} = \overline{A} \cup \overline{B}
\]

Double complement:

\[
\overline{\overline{A}} = A
\]

Proof of 2nd DeMorgan:

\[
\overline{A \cup B} = \{ x \mid x \notin (A \cup B) \} \\
= \{ x \mid x \in \overline{A} \cap \overline{B} \}
\]
\[
\{ x \mid \neg (x \in A \lor x \in B) \}
\]

\[
= \{ x \mid \neg (x \in A) \land \neg (x \in B) \}
\]

\[
= \{ x \mid x \notin A \land x \notin B \}
\]

\[
= \overline{A} \cap \overline{B}
\]

Exercise: Prove all identities on p. 130 in this manner.
We can also use membership tables.

Proof 2nd Distributive:

\[A \cup (B \cap C) = (A \cup B) \cap (A \cup C) \]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>B\cap C</th>
<th>A\cup(B\cap C)</th>
<th>A\cup B</th>
<th>A\cup C</th>
<th>(A\cup B)\cap (A\cup C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Exercise: Use membership table to determine whether symmetric difference is associative.

\[A \oplus (B \oplus C) = (A \oplus B) \oplus C \]

Picture for 2nd Dist.
Representations of sets

We often wish to represent sets in a computer program.
One way: Start with a fixed collection of objects, indexed 1 to n.

\[U = \{ x_1, x_2, x_3, \ldots, x_n \} \]

Then represent subsets of U by bitstrings of length n.
S \subseteq U is defined by

- \(x_i \in S \) iff \(i^{th} \) bit is 1
- \(x_i \notin S \) iff \(i^{th} \) bit is 0
\[\mathcal{U} = \{ 1, 2, 3, 4 \} \]

0000 \rightarrow \emptyset

1111 \rightarrow \mathcal{U}

1011 \rightarrow \{ 1, 3, 4 \}

0101 \rightarrow \{ 2, 4 \}

1000 \rightarrow \{ 1, 2 \}

bitwise or \rightarrow union

bitwise and \rightarrow intersection

bitwise xor \rightarrow \text{symm. diff}

bitwise negation \rightarrow \text{complement}
2.3 Functions

Definition

A function (also map, mapping, or transformation) consists of three things:

1. A set A called Domain.
2. A set B called Codomain.
3. A rule f that assigns to each $x \in A$ a unique $y \in B$.

Notation: if f maps x to y we write $y = f(x)$

Notation: $f: A \rightarrow B$
Uniqueness:

not unique
not a function

or
does not violate uniqueness
is a function.