CMPE-013/L

Introduction to “C” Programming

Maxwell James Dunne
Battle Boats
NMEA 0183

'GPS'

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>$</code></td>
<td>The start-of-message identifier, always a dollar-sign</td>
</tr>
<tr>
<td>MESSAGE_ID</td>
<td>A 3-character string identifying the type of message.</td>
</tr>
<tr>
<td><code>,</code></td>
<td>A comma separates the MESSAGE_ID from the subsequent data</td>
</tr>
<tr>
<td>DATA1,DATA2,DATA3,...</td>
<td>A comma-separated list of data, all encoded as ASCII characters</td>
</tr>
<tr>
<td><code>*XX</code></td>
<td>A message ends with an asterisk and then a checksum byte encoded as two separate ASCII hexadecimal characters (like '0A'). This checksum is calculated from ALL bytes between the <code>$</code> and the <code>*</code>.</td>
</tr>
<tr>
<td><code>\n</code></td>
<td>A newline character actually ends the string.</td>
</tr>
</tbody>
</table>

Example:

```
$CO0,123,
```
Agent A generates a random 16-bit number that is its "guess" along with another 16-bit number that is used as the encryption key.

Agent A then transmits a checksum of both its guess and key (which is an 8-bit XOR of all of their bytes) along with an encrypted version of its guess (which is a 16-bit XOR of the guess with the encryptionKey).

During this time Agent B is doing the same thing.
• Once Agent A has received Agent B's encrypted guess and checksum, it transmits the unencrypted guess and the encryption key (and Agent B does the same).

• 5. Agent B can now verify Agent A's information by verifying both the checksum and the encryption key (and Agent A does the same).

• 6. Now both can agree on who should go first by having either guessed higher or lower than the other agent depending on if the XOR of the LSB of their guesses is 1 or 0.
Sample Guess

Alice

guess, key, Eguess, checksum

bob

guess, key, Eguess, checksum
guess \land \text{key} = \text{eqguess}

\text{Checksum} \left(\text{guess, key} \right) = \text{Checksum}
Read byte() i

0 if (in)
1) decode

Max(portner1, portner2)
| Negotiation Data Set 1 | $CHA, 37348, 117*46
| | $DET, 9578, 46222*66 |
| Negotiation Data Set 2 | $CHA, 54104, 139*45
| | $DET, 32990, 21382*5e |
| Negotiation Data Set 3 | $CHA, 62132, 70*79
| | $DET, 52343, 16067*50 |
| Negotiation Data Set 4 | $CHA, 36027, 55*7a
| | $DET, 7321, 36898*6e |
| HIT messages | $HIT, 3, 8, 1*43
| | $HIT, 0, 2, 0*4b
| | $HIT, 2, 3, 1*49
| | $HIT, 5, 6, 4*4e
| | $HIT, 0, 3, 0*4a
| | $HIT, 1, 7, 1*4e
| | $HIT, 4, 8, 0*45
| | $HIT, 5, 3, 3*4c
| | $HIT, 0, 5, 0*4c
| | $HIT, 5, 6, 1*4b
| | $HIT, 1, 1, 1*48
| | $HIT, 1, 0, 0*48
| | $HIT, 5, 2, 5*4b
| | $HIT, 2, 8, 0*43
| | $HIT, 0, 6, 0*4f
| | $HIT, 5, 9, 0*45
| | $HIT, 2, 8, 2*41 |