CMPE-013/L

Expressions and Control

Maxwell James Dunne
Expressions

- Represents a single data item (e.g. character, number, etc.)
- May consist of:
 - A single entity (a constant, variable, etc.)
 - A combination of entities connected by operators (+, -, *, / and so on)
Expressions

Examples

```
Example

a + b
x = y
speed = dist / time
z = ReadInput()
c <= 7
x == 25
++count
d = a + 5
```
Statements

• Cause an action to be carried out

• Three kinds of statements in C:
 – Expression Statements
 – Compound Statements
 – Control Statements
Expression Statements

- An expression followed by a semi-colon
- Execution of the statement causes the expression to be evaluated

Examples

```
i = 0;
i++;
a = 5 + i;
y = (m * x) + b;
printf("Slope = %f", m);
; ≠ NOP
```
Compound Statements

• A group of individual statements enclosed within a pair of curly braces { and }
• Individual statements within may be any statement type, including compound
• Allows statements to be embedded within other statements
• Does NOT end with a semicolon after }
• Also called Block Statements
{
 float start, finish;
 start = 0.0;
 finish = 400.0;
 distance = finish - start;
 time = 55.2;
 speed = distance / time;
 printf("Speed = %f m/s", speed);
}
Control Statements

- Used for loops, branches and logical tests
- Often require other statements embedded within them

Example

```c
while (distance < 400.0) {
    printf("Keep running!");
    distance += 0.1;
}
```

(while syntax: `while expr statement`)
Boolean Expressions

- Boolean data type added in C99
- Boolean expressions return integers:
 - 0 expressions evaluate as false
 - non-zero expressions evaluate as true (generally 1)

```c
{
    int x = 5;
    bool y, z;

    y = (x > 4);  // y = true (1)
    z = (x > 6);  // z = false (0)
    while (1);
}
```
Boolean Expressions

Equivalent Expressions

- If a variable, constant, or function call is used alone as the conditional expression:
 \[(\text{myVar}) \text{ or } (\text{Foo}())\]

- This is the same as saying:
 \[(\text{myVar} \neq 0) \text{ or } (\text{Foo}() \neq 0)\]

- In either case, if \(\text{myVar} \neq 0\) or \(\text{Foo}() \neq 0\),
 then the expression evaluates as true (non-zero)

\[\text{myVar} == 1\]
if Statement

Syntax

if (expression) statement

• expression is evaluated for boolean true(≠0) or false (=0)
• If true, then statement is executed

Note

Whenever you see statement in a syntax guide, it may be replaced by a compound (block) statement.

Remember: spaces and new lines are not significant.

```c
if (expression) {
    statement_1
    statement_2
}
```
if Statement

Flow Diagram

Syntax:

```plaintext
if (expression) statement
```

Diagram:

- **START**
- **expression**
 - **true** if `expression ≠ 0`
- **false** if `expression = 0`
- **statement**
- **END**
if Statement

Example

```c
{  
    int x = 5;
    if (x) {
        printf("x = %d\n", x);  // If x is TRUE (non-zero)...
    }
    while (1);
}
```

- What will print if \(x = 5 \)? ... if \(x = 0 \)?
- ...if \(x = -82 \)?
- ...if \(x = 65536 \)?
if Statement

Testing for TRUE

- `if (x) VS. if (x == 1)
 - `if (x)` only needs to test for not equal to 0
 - `if (x == 1)` needs to test for equality with 1
 - Remember: true is defined as non-zero, false is defined as zero

Example: if (x)

```assembly
if (x)
```

<table>
<thead>
<tr>
<th></th>
<th>011B4</th>
<th>E208C2</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>011B6</th>
<th>320004</th>
</tr>
</thead>
<tbody>
<tr>
<td>011B6</td>
<td>320004</td>
<td></td>
</tr>
</tbody>
</table>

```assembly
cp 0.w 0x08c2
bra z, 0x0011c0
```

Example: if (x == 1)

```assembly
if (x == 1)
```

<table>
<thead>
<tr>
<th></th>
<th>011C0</th>
<th>804610</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>011C2</th>
<th>500FE1</th>
</tr>
</thead>
<tbody>
<tr>
<td>011C2</td>
<td>500FE1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>011C4</th>
<th>3A0004</th>
</tr>
</thead>
<tbody>
<tr>
<td>011C4</td>
<td>3A0004</td>
<td></td>
</tr>
</tbody>
</table>

```assembly
mov.w 0x08c2,0x0000
sub.w 0x0000,#1,[0x001e]
bra nz, 0x0011ce
```
2 ≤ p_{a r t+0} < 120
Nested if Statements

Example

```c
int power = 10;
float band = 2.0;
float frequency = 146.52;

if (power > 5) {
    if (band == 2.0) {
        if ((frequency > 144) && (frequency < 148)) {
            printf("Yes, it's all true!\n");
        }
    }
}
```
if-else Statement

Syntax

```
if (expression) statement₁
else statement₂
```

- **expression** is evaluated for boolean true ($\neq 0$) or false ($= 0$)
- If true, then $statement₁$ is executed
- If false, then $statement₂$ is executed
if-else Statement

Syntax

```c
if (expression) statement_1
else statement_2
```

Flow Diagram:

- **START**
- **expression**
 - **true**
 - **statement_1**
 - **false**
 - **expression = 0**
 - **statement_2**
- **END**
if-else Statement

Example

```c
float frequency = 146.52; // Frequency in MHz

if ((frequency > 144.0) && (frequency < 148.0)) {
    printf("You're on the 2 meter band\n");
} else {
    printf("You're not on the 2 meter band\n");
}
```
if-else if Statement

Syntax

```plaintext
if (expression_1) statement_1
else if (expression_2) statement_2
else statement_3
```

- `expression_1` is evaluated for boolean true (≠0) or false (=0)
- If true, then `statement_1` is executed
- If false, then `expression_2` is evaluated
- If true, then `statement_2` is executed
- If false, then `statement_3` is executed
if-else if Statement

Flow Diagram

Syntax

\[
\text{if } (\text{expression}_1) \text{ statement}_1 \\
\text{else if } (\text{expression}_2) \text{ statement}_2 \\
\text{else } \text{statement}_3
\]
if-else if Statement

Example

```c
if ((freq > 144) && (freq < 148)) {
    printf("You're on the 2 meter band\n");
} else if ((freq > 222) && (freq < 225)) {
    printf("You're on the 1.25 meter band\n");
} else if ((freq > 420) && (freq < 450)) {
    printf("You're on the 70 centimeter band\n");
} else {
    printf("You're somewhere else\n");
}
```
while Loop

Syntax

```
while (expression) statement
```

- If `expression` is true, `statement` will be executed and then `expression` will be re-evaluated to determine whether or not to execute `statement` again.

- It is possible that `statement` will never execute if `expression` is false when it is first evaluated.
while Loop

Flow Diagram

Syntax

```
while (expression) statement
```

```
START

expression?

true

statement

false

END
```
while Loop

Example

```c
int i = 0;   // Loop counter initialized outside of loop

while (i < 5) {  // Condition checked at start of loop iterations
    printf("Loop iteration %d\n", i++);  // Loop counter incremented manually inside loop
}
```

Expected Output:

```
Loop iteration 0
Loop iteration 1
Loop iteration 2
Loop iteration 3
Loop iteration 4
```
while Loop

- Primary looping mechanism
- Completely generic
- Frequently used for main loop of program
Functions
Program Structure

main()
{
 ...
 eat();
 ...
 drink();
 ...
}

eat()
{
 ...
 return;
}

be_merry()
{
 ...
 return;
}

be_merry()
Functions

What is a function?

Definition

Functions are self contained program segments designed to perform a specific, well defined task.

- All C programs have one or more functions
- The `main()` function is required
- Functions can accept parameters from the code that calls them
- Functions return a single value (but can export more data)
- Functions help to organize a program into logical, manageable segments
Functions

Remember Algebra Class?

• Functions in C are conceptually like an algebraic function from math class...

 \[f(x) = x^2 + 4x + 3 \]

 Function Name \[f(x) \] \(\rightarrow \)

 Function Definition \[f(x) = x^2 + 4x + 3 \]

 Function Parameter \(x \)

• If you pass a value of 7 to the function: \(f(7) \), the value 7 gets "copied" into \(x \) and used everywhere that \(x \) exists within the function definition: \[f(7) = 7^2 + 4*7 + 3 = 80 \]
Functions

Definitions

Syntax

Data type of
return \textit{expression}

\begin{align*}
\text{Name} & \\
\text{Parameter List} & \quad \text{(optional)} \\
\text{Body} & \\
\text{Header} & \\
\text{Return Value} & \quad \text{(optional)}
\end{align*}

\begin{align*}
\text{type} & \quad \text{identifier} (\text{type}_1 \ arg_1, \ldots, \text{type}_n \ arg_n) \\
\{ & \\
\text{declarations} & \\
\text{statements} & \\
\text{return} & \quad \text{expression} \\
\}
\end{align*}
Functions

Function Definitions: Syntax Examples

Example

```c
int Maximum(int x, int y)
{
    int z;
    z = (x >= y) ? x : y;
    return z;
}
```

Example – A more efficient version

```c
int Maximum(int x, int y)
{
    return ((x >= y) ? x : y);
}
```
Functions

Function Definitions: Return Data Type

Syntax

```
type identifier(type1 arg1, ..., type_n arg_n)
{
    declarations
    statements
    return expression;
}
```

- A function's `type` must match the type of data in the return `expression`
Functions

Function Definitions: Return Data Type

- A function may have multiple return statements, but only one will be executed and they must all be of the same type.

Example

```c
int bigger(int a, int b)
{
    if (a > b) {
        return 1;
    } else {
        return 0;
    }
}
```
Functions

Function Definitions: Return Data Type

• The function type is **void** if:
 – The **return** statement has no **expression**
 – The **return** statement is not present at all

• This is sometimes called a *procedure function* since nothing is returned

Example

```c
void identifier(type1 arg1, ..., type_n arg_n)
{
    declarations
    statements
    return;  // may be omitted if nothing is being returned
}
```
Functions

Function Definitions: Parameters

- A function's parameters are declared just like ordinary variables, but in a comma delimited list inside the parentheses.
- The parameter names are only valid inside the function (local to the function).

```
type identifier(type_1 arg_1,...,type_n arg_n)
{
    declarations
    statements
    return expression;
}
```

Maxwell James Dunne
Functions

Function Definitions: Parameters

- Parameter list may mix data types
 \[\text{int } \text{Foo}(\text{int } x, \text{ float } y, \text{ char } z) \]

- Parameters of the same type must be declared separately – in other words:
 \[\text{int } \text{Maximum}(\text{int } x, y) \text{ will not work} \]
 \[\text{int } \text{Maximum}(\text{int } x, \text{ int } y) \text{ is correct} \]

Example

```c
int Maximum(int x, int y)
{
    return ((x >= y) ? x : y);
}
```
Functions
Function Definitions: Parameters

• If no parameters are required, use the keyword `void` in place of the parameter list when defining the function

```c
void function_name() {
    declarations
    statements
    return expression;
}
```
Functions
How to Call / Invoke a Function

Function Call Syntax

- No parameters and no return value
 \[\text{Foo}() ; \]

- No parameters, but with a return value
 \[x = \text{Foo}() ; \]

- With parameters, but no return value
 \[\text{Foo}(a, b) ; \quad \text{return} \; 2 ; \]

- With parameters and a return value
 \[x = \text{Foo}(a, b) ; \]
Functions

Function Prototypes

• Just like variables, a function must be declared before it may be used
• Declaration must occur before main() or other functions that use it
• Declaration may take two forms:
 – The entire function definition
 – Just a function prototype – the function definition itself may then be placed anywhere in the program
Functions
Function Prototypes

- Function prototypes may be take on two different formats:
 - An exact copy of the function header:
    ```c
    int Maximum(int x, int y);
    ```
 - Like the function header, but without the parameter names – only the types need be present for each parameter (bad form!):
    ```c
    int Maximum(int, int);
    ```

Maxwell James Dunne
Functions
Declaration and Use: Example 1

Example 1

```c
int a = 5, b = 10, c;

int Maximum(int x, int y)
{
    return ((x >= y) ? x : y);
}

int main(void)
{
    c = Maximum(a, b);
    printf("The max is %d\n", c);
}
```

Function is declared and defined before it is used in main()
Functions
Declaration and Use: Example 2

Example 2

```c
int a = 5, b = 10, c;

int Maximum (int x, int y);

int main (void)
{
    c = Maximum (a, b);
    printf ("The max is \%d\n", c);
}

int Maximum (int x, int y)
{
    return ((x >= y) ? x : y);
}
```

Function is declared with prototype before use in main()

Function is defined after it is used in main()
printf()
Standard Library Function

- Used to write text to the "standard output"
- Normally a computer monitor or printer
- Often the UART in embedded systems
- SIM Uart1/2 window in MPLAB X
Printf is huge and slow

robot

Printfs ~10ms

~1ms
printf()
Standard Library Function

Syntax

```
printf(ControlString, arg1, ..., argn);
```

- Everything printed verbatim within string except %d's which are replaced by the argument values from the list

Example

```c
int a = 5, b = 10;
printf("a = %d\n, b = %d\n", a, b);
```

Result:

```
a = 5
b = 10
```

NOTE: the 'd' in %d is the conversion character.
(See next slide for details)
printf()

Gotchas

- The value displayed is interpreted entirely by the formatting string:

  ```c
  printf("ASCII = %d", 'a');
  ```

 will output: _ASCII = 97_

 A more problematic string:

  ```c
  printf("Value = %ld", 6.02e23);
  ```

 will output: _Value = 26366_

- Incorrect results may be displayed if the format type doesn't match the actual data type of the argument
printf() operates on lines of text.
Output text may not be transmit until a newline is sent.

Example

```c
printf("a");
```

Output:
printf()

Output buffer

- printf() operates on lines of text.
- Output stored in a buffer until a newline triggers transmission.

Example

```c
printf("a\n");
```

Output:

"a\n"
`printf()`

The output buffer

`stdio.h`

output buffer

UART
`printf()`

Format specifiers

`%[flags][width][.precision][size]type`

- Flags – Special printing options
- Width – The minimum size (in chars) of the output
- Precision – Field width
- Size – Convert from base types to longer/shorter types
- Type – The base variable type
printf()
Format specifiers

`%[flags][width][.precision][size]type`

- **Flags** – Special printing options
 - `'-'` -> Left justify
 - `'0'` -> Pad with zeros
 - `'+'` -> Output `+'` for positive values
 - `' '` -> Don’t output a sign symbol
 - `'#'` -> Prefix integer value based on output type
printf()
Format specifiers

%[flags][width][.precision][size]type

- **Width** – The minimum size (in chars) of the output
 - Output is padded
 - ‘0’ flag specifies padding with ‘0’s instead of ‘ ‘s
printf()
Format specifiers

%[flags][width][.precision][size]type

- **Precision** – Field width
 - For integers, minimum number of digits
 - For floats, number of fractional digits/significant figures
 - For strings, number of characters
printf()
Format specifiers

%[flags][width][.precision][size]type

- **Size** – Convert from base types to longer/shorter types
 - ‘h’ -> Converts to short
 - ‘l’ -> Converts to long/double
 - ‘ll’ -> Converts to long long/long double
`printf()`

Format specifiers

<table>
<thead>
<tr>
<th>Conversion Character</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>Single character</td>
</tr>
<tr>
<td>s</td>
<td>String (all characters until '\0')</td>
</tr>
<tr>
<td>d</td>
<td>Signed decimal integer</td>
</tr>
<tr>
<td>o</td>
<td>Unsigned octal integer</td>
</tr>
<tr>
<td>u</td>
<td>Unsigned decimal integer</td>
</tr>
<tr>
<td>x</td>
<td>Unsigned hexadecimal integer with lowercase digits (1a5e)</td>
</tr>
<tr>
<td>X</td>
<td>As x, but with uppercase digits (e.g. 1A5E)</td>
</tr>
<tr>
<td>f</td>
<td>Signed decimal value (floating point)</td>
</tr>
<tr>
<td>e/E</td>
<td>Signed decimal with exponent (e.g. 1.26e-5)</td>
</tr>
<tr>
<td>p</td>
<td>A pointer value indicating a memory address</td>
</tr>
<tr>
<td>g/G</td>
<td>As e or f, but depends on size and precision of value</td>
</tr>
<tr>
<td>g</td>
<td>Prints ‘%’</td>
</tr>
</tbody>
</table>
printf()
Format String Examples

- Print a hexadecimal:

```c
printf("0x\%06x\n", x);
```

- Any unused spaces will be filled with zeros
- Specifies that 6 characters must be output (excluding 0x prefix)

871587 ↔ 0x0d4ca3
printf()
Format String Examples

- Printing a double:

```c
printf("f = 806.3f\n", f);
```

- Any unused spaces will be filled with zeros
- Specifies that 6 characters must be output
- Specifies that 3 decimal places will be output

```
3.3 03.300
```
printf() Format String Examples

- Printing a double:

```c
printf("%.1f88\n", percentCorrect);
```

- `.1` Specifies that 1 decimal place will be output
- `%%` Outputs a literal ` '%' `
printf()
Format String Examples

- Printing a double:

```c
printf("%.1f"
, (double)percentCorrect);
```

.1 Specifies that 1 decimal place will be output

%% Outputs a literal ‘%’

97.322 → 97.38
scanf()

Standard Library Function

- Used to read input from the "standard input"
- Normally a keyboard or file
- Often the UART in embedded systems
- Input file in the simulator
- Entire family of functions:
 - `sscanf()` reads from a string
 - `fscanf()` reads from a file
`scanf()`
Standard Library Function

Syntax

```c
int scanf(FormatString, arg1, ..., argn);
```

- The format string tells `scanf` what kind of input.
- `arg1` through `argn` are **POINTERS** to variable of the right type.

Example

```c
int a, b;
printf("Input a and b\n");
scanf("%d %d", &a, &b);
printf("a=%d\nb=%d", a, b);
```
scanf()

Gotchas

- Ignores blanks and tabs in format string
- Skips over white space (blanks, tabs, newline) as it looks for input
- Returns number of successful conversions
- Arguments **must** be pointers to variable types
- Arguments not processed in the input will be left in the input buffer.
`scanf()`

The input buffer

`stdio.h`

output buffer

UART

Input buffer
scansf()

Standard Library Function

Example

```c
int a, b;
printf("Input a and b\n");
scanf("%d %d", &a, &b);
printf("a=%d\nb=%d", a, b);
scanf("%d %d", &a, &b);
printf("a=%d\nb=%d", a, b);
```

Input:

```
"3140 56\n"
```

Output:

```
a=3140
b=56
```

```
"77 -3\n"
```

Output:

```
a=77
b=-3
```
The input buffer

```
3 1 4 0      5 6  \n```

```c
scanf("%d %d", &a, &b)
```

```
3 1 4 0 5 6 \n```

\[a = 3140, \ b = 56 \]
`scanf()`

The input buffer

```
\n  7  7  -  3  \n```

```
scanf("%d %d", &a, &b)
```

Nothing!
`scanf()`

The input buffer

```
3 1 4 0 5 6 \n
```

```
scanf("%d %d%c", &a, &b, &c)
```

```
Chor trash,
```

```
3 1 4 0 \n5 6 \n
```

```
a = 3140, b = 56
```
\textbf{scanf()} \newline Format specifiers \newline \%[*][width][modifier]\textbf{type} \newline \begin{itemize} \item * – Ignores this field \item Width – The maximum number of characters to match \item Modifier – Convert from base types to longer/shorter types \item Type – The base variable type \end{itemize}
scanf()

Examples

- Read input line with date in the format:
  - 25/12/2012

```c
scanf("%d/%d/%d", &day, &month, &year);
```

day    int, &day is pointer to day

month  int, &month is pointer to month

year   int, &year is pointer to year
 scanf ()

Examples

• Read input line with date in the format:
  – 25 Dec 2012

```
 scanf("%d %s %d", \&day, month, \&year);
```

  day     int, \&day is pointer to day

  month   char[20], is a string for putting the month into, does not need "\&" because name of array is already a pointer

  year    int, \&year is pointer to year
scanf()

Return value

Example

```c
int a, b;
char c;
while (scanf("%d %d%c", &a, &b, &c) != 3) {
 printf("Please enter an integer pair!\n");
}
```
Arrays are variables that can store many items of the same type. The individual items known as elements, are stored sequentially and are uniquely identified by the array index (sometimes called a subscript).

Arrays:
- May contain any number of elements
- Elements must be of the same type
- The index is zero based
- Array size (number of elements) must be specified at declaration
Arrays

How to Create an Array

Arrays are declared much like ordinary variables:

```
Syntax

type arrayName[size];
```

- `size` refers to the number of elements
- `size` can be a constant OR specified at runtime (c99)

Example

```
int a[10];
char s[25];
char str[x];
```
Arrays

How to Initialize an Array at Declaration

Arrays may be initialized with a list when declared:

```
Syntax

type arrayName[size] = {item₁, ..., itemₙ};
```

- The items must all match the type of the array

Example

```
int a[5] = {10, 20, 30, 40, 50};

char b[5] = {'a', 'b', 'c', 'd', 'e'};
```
Arrays
How to Use an Array

Arrays are accessed like variables, but with an index:

Syntax

arrayName[index]

- `index` may be a variable or a constant
- The first element in the array has an index of 0
- C does not provide any bounds checking

Example

```c
int i, a[10]; // An array that can hold 10 integers

for(i = 0; i < 10; i++) {
 a[i] = 0; // Initialize all array elements to 0
}

a[4] = 42; // Set fifth element to 42
```
Arrays
Creating Multidimensional Arrays

Add additional dimensions to an array declaration:

**Syntax**

```
type arrayName[size_1]...[size_n];
```

- Arrays may have any number of dimensions
- Three dimensions tend to be the largest used in common practice

**Example**

```c
int a[10][10]; // 10x10 array for 100 integers

float b[10][10][10]; // 10x10x10 array for 1000 floats
```
Arrays

Initializing Multidimensional Arrays at Declaration

Arrays may be initialized with lists within a list:

**Syntax**

```c
type arrayName[size_0]...[size_n] =
 {{item,...,item},
 ...,
 {item,...,item}};
```

**Example**

```c
char a[3][3] = {{'X', '0', 'X'},
 {'0', '0', 'X'},
 {'X', 'X', '0'}};

int b[2][2][2] = {{{0, 1},{2, 3}},{{4, 5},{6, 7}}};
```
Arrays

Visualizing 2-Dimensional Arrays

```c
int a[3][3] = {
 {0, 1, 2},
 {3, 4, 5},
 {6, 7, 8}
};
```

```
<table>
<thead>
<tr>
<th>y</th>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
```

Row, Column

Row 0
- a[0][0] = 0;
- a[0][1] = 1;
- a[0][2] = 2;

Row 1
- a[1][0] = 3;
- a[1][1] = 4;
- a[1][2] = 5;

Row 2
- a[2][0] = 6;
- a[2][1] = 7;
- a[2][2] = 8;
Arrays
Visualizing 3-Dimensional Arrays

```c
int a[2][2][2] = {{0, 1}, {2, 3}},
 {{4, 5}, {6, 7}};
```

**Plane, Row, Column**

```
[] [] []
a [z] [y] [x]

<table>
<thead>
<tr>
<th>Plane 0</th>
<th>Plane 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a[0][0][0] = 0;</td>
<td>a[1][0][0] = 4;</td>
</tr>
<tr>
<td>a[0][0][1] = 1;</td>
<td>a[1][0][1] = 5;</td>
</tr>
<tr>
<td>a[0][1][0] = 2;</td>
<td>a[1][1][0] = 6;</td>
</tr>
<tr>
<td>a[0][1][1] = 3;</td>
<td>a[1][1][1] = 7;</td>
</tr>
</tbody>
</table>
```

CMPE-013/L: “C” Programming
/* Print out 0 to 90 in increments of 10 */

int main(void)
{
    int i = 0;
    int a[10] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};

    while (i < 10) {
        a[i] *= 10;
        printf("%d\n", a[i]);
        ++i;
    }

    while (1);
}