Data Representation and Arithmetic

Gabriel Hugh Elkaim
Data Representation

In books...

On audio and video disks...

In paintings or drawings...

On tape...

In the human memory...

How to build + deliver H-bombs

In diagrams, etc!
Data Representation

Goal: Store information (numbers, characters, ...)

- in binary
Data Representation

Integers

Integers, or whole numbers, if they are not too large, are encoded in straight binary. For instance, 185 would become 10111001.

Binary Coded Decimal

Binary coded decimal represents a number in decimal, but with each digit encoded in binary. For instance, 967 would become 1001 0101 0111 or 9 6 7.

Floating Point Representation

Floating point representation is for large or fractional numbers. For example, 19,700.0302 would be encoded as the binary equivalent of 10111100 00000000 01111011 00000000, meaning 197 x 10^5. Floating point representation often involves rounding off.
BIT is an abbreviation of "BINARY DIGIT." It refers to a single 0 or 1.

It's very common to group bits eight at a time, and any string of eight bits is called a

BYTE.

There are 2^8, or 256, possible bytes, from 00000000 to 11111111.
Storing Information (n-bits)

\[
\begin{array}{c|c}
T & 1 \\
F & 0 \\
\end{array}
\quad \begin{array}{c|c}
\text{High} & 1 \\
\text{Low} & 0 \\
\end{array}
\quad \text{More Bits} \quad 1024
\]

25 bits

\[
\begin{array}{c}
11 \\
10 \\
01 \\
00 \\
\end{array}
\}
\text{4 items}
\]

3 bits

\[
\begin{array}{c}
111 \\
110 \\
101 \\
000 \\
\end{array}
\}
\text{8 items}
\]

N-bits \rightarrow 2^n

8 bits = 256
16 bits = 65536
32 bits = 1294967296
64 bits = 1.84467 \times 10^{19}

Gabriel Hugh Elkaim
CMPE-012/L
Integer Representation (1.2)

- Assume I have a fixed number of bits (32)
- Which 4 billion integers do I want?

→ UNSIGNED → 0 → 4 Billion consecutive unsigned integers

→ SIGNED ↓ 2's complement
 ↓ 1's complement
 ↓ Biasing / SHL
Integer Representation (2.2)

Unsigned

2's Complement

Most Negative

Most Positive Number

-128 0 127
1 megabyte — 16 bit — 65K — ~1 minute
32 bit — 48 — ~50 days
Unsigned Integers (1.2)

\[\begin{align*}
 0000 & \rightarrow 0 \\
 0001 & \rightarrow 1 \\
 \vdots & \\
 1111 & \rightarrow 15
\end{align*} \]

Encodes only positive integers

Range: \(0 \rightarrow 2^n - 1 \)
Unsigned Integers (2.2)

4 bit unsigned int.

\[n = 4 \Rightarrow 2^n - 1 = 16 - 1 = 15 \]

\[7 \rightarrow 0111 \]

17 \[\begin{array}{c}
10001
\end{array} \]

-3 \(?\)

32 bits \[\rightarrow 0 - 2^{32} - 1 = [0 : 4,294,967,295] \]
One’s Complement

Flip all the bits

1011
0100

1011 0111
0100 10100

0000 0111
7 1000 1

-
One’s Complement Representation
Two’s Complement (1.2)

- Top bit is set if number is < 0

- Additive inverse of a number

- Take the number (in binary)
 1. Flip all the bits
 2. Add 1.
Two’s Complement (2.2)

4 bits $\rightarrow (-5)$

\[
\begin{align*}
1 & \quad 1 & \quad 1 & \quad 1 \\
0 & \quad 1 & \quad 0 & \quad 1 \\
+ & \quad 1 & \quad 0 & \quad 1 & \quad 1 \\
\hline
1 & \quad 0 & \quad 0 & \quad 0 & \quad 0
\end{align*}
\]

\[
\begin{align*}
0101 & \quad (5) \\
1010 & +1 \\
\hline
1011 & \quad (-5)
\end{align*}
\]

\[
\begin{align*}
1011 & \quad (5) \\
01\infty & +1 \\
\hline
0101 & - (5)
\end{align*}
\]
Two’s Complement Conversion

-12 in 8-bit 2's complement.

12
1100 - "c"

0000 1100 (12)

1111 0011 +1

0000 10100 (-12)

0000 1100

CARRY OVER
Two’s Complement Addition (1.2)

1000 0000
FF
-128

0

0

3F

255
Two's Complement Addition (2.2)

\[-20 + 15:\]

\[\begin{array}{c}
\begin{array}{c}
0000 \\
1110 \\
1100 \\
\hline
1111 \\
1011 \\
\hline
0000 0100
\end{array}
\end{array}\]

\[15\]

\[-20\]

\[\begin{array}{c}
\begin{array}{c}
0000 1000 \\
1110 1011 \\
\hline
1110 1100
\end{array}
\end{array}\]

\[(5)\]
Subtraction (1.2)

\[
\begin{array}{c}
127 \\
-6 \\
\hline
18
\end{array}
\quad
\begin{array}{c}
01010 \\
-0101 \\
\hline
1010
\end{array}
\quad (10) \\
\quad (5)
Subtraction (2.2)

1 - 1 = 0
0 - 0 = 0
1 - 0 = 1
10 - 1 = 1
0 - 1 → need to borrow
Two’s Complement Subtraction (1.2)

Don’t subtract!! Add instead

6 Bits 3 - 4

\[\begin{align*}
\text{000011 (3)} + &\text{11100 (-4)} \\
\underline{\text{111111 (-1)}} &\text{101000 (-2)} \\
\underline{\text{010000 (16)}} &\text{110000 (-8)}
\end{align*} \]
Two’s Complement Subtraction (2.2)

True Additive Inverse
Add Numbers
Ignore Carryout Bit

\[-10 - 3\]

\[
\begin{array}{c}
00011 \\
\text{-10 (10)} \\
\text{10110 (-10)} \\
\hline \\
\text{11100}
\end{array}
\]

\[
\begin{array}{c}
\times 10011 \\
\hline \\
\end{array}
\]
Sign Extension (1.2)
Sign Extension (2.2)

(5) 0101

(10) 1010

(-2) 1010

0 0 0 1010

0 1 0 0 1010

0 1 1 0

10 unsigned

UNSCONED
Sign Extension — Unsigned

Copy bits down
Pad upper bits w/ 0's.

0 0 1 0 1 1 0
Sign Extension — 1’s and 2’s Complement

If \(\text{it is } > 0 \rightarrow \text{same as unsigned} \)

If \(\text{it is } < 0 \rightarrow \)

Look at MSB

Replicate it out to left

Gabriel Hugh Elkaim
Digital Logic and Gates

Gabriel Hugh Elkaim
Statements are True or False

\[P = \text{"The pig has spots."} \]

\[Q = \text{"The pig is glad."} \]

\[
\begin{array}{c}
\text{T} & \text{F} \\
\end{array}
\]

\[
\begin{array}{c}
\text{T} & \text{F} \\
\end{array}
\]
Truth Tables

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>P AND Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>P OR Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P</th>
<th>NOT P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Truth Table

<table>
<thead>
<tr>
<th>INPUTS</th>
<th>OUTPUTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Basic representation of a logic function.

2^n
NOT

NOT = The pig is NOT spotted.

This operator simply turns a statement into its opposite.

<table>
<thead>
<tr>
<th>P</th>
<th>NOT·P</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>
Truth Table: Inverter

<table>
<thead>
<tr>
<th>A</th>
<th>(Y = \bar{A} \lor A')</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
This kind of switch is called an **inverter**, and it has a symbol, too:

\[A \rightarrow \overline{A} \]

0 "short hand"
Truth Table: AND

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Y = A \cdot B (A \land B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Truth Table: AND

That's why this arrangement of switches is called an AND-GATE and it has its very own symbol.
Truth Table: NAND

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Y = \overline{(A \cdot B)}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Y = \overline{(A \cdot B)} = \text{NOT } (A \text{ AND } B)

Diagram:

- AND gate
- Invertor

NAND gate
Truth Table: NAND

NAND Gate, which is merely an abbreviation of "not-and."

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>NAND</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Truth Table: OR

<table>
<thead>
<tr>
<th>(A)</th>
<th>(B)</th>
<th>(Y = (A + B))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Truth Table: OR

This is the OR-GATE and its symbol is:
Truth Table: NOR

\[y = \overline{(A + B)} = \overline{A} \cdot \overline{B} \]

\[y = \text{NOT}(A \text{ OR } B) \]
Truth Table: NOR

A NOR-gate is a shorthand way of writing "not or:" i.e.

\[
\begin{array}{c|c|c}
A & B & A \text{ NOR } B \\
\hline
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
1 & 1 & 0 \\
\end{array}
\]
Truth Table: XOR

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>(Y = A \oplus B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

\(\wedge \) if and only if two inputs are different.

Exclusive OR
Multiple Input AND/OR Gates

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

- **ALL 0's**
- **ALL 1's**
Truth Table to Gates (1.2)
Truth Table to Gates (2.2)

1. Read each row of the truth table independently.
2. For each row where output = 1, draw a gate that matches those inputs.
3. On the output of step 2 together.
4. This always works, not optimal.
Example: XOR
Arbitrary Gate Synthesis
Binary Addition Review (1.2)

Binary calculation is simple. There are only five rules to remember:

0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 10

And the handy fifth rule:
1 + 1 + 1 = 11

As opposed to 100 sums in decimal: 9+6, 7+5, 9+3, 8+4, 4+6, etc etc etc!!!
Binary Addition Review (2.2)
Truth Table: Full Adder (1.3)
Truth Table: Full Adder (2.3)
Truth Table: Full Adder (3.3)
Boolean Algebra (1.2)
Boolean Algebra (2.2)
Boolean Algebra Properties
Boolean Algebra: Single-Variable
De Morgan’s Laws (1.4)
De Morgan’s Laws (2.4)
De Morgan’s Laws (3.4)
De Morgan’s Laws (4.4)
NAND Gates (1.4)

The Amazing NAND:
NAND Gates (2.4)

The Amazing NAND:
NAND Gates (3.4)

The Amazing NAND:
NAND Gates (Examples)
NAND Gates (Examples)
NAND Gates (Examples)
NAND Gates (4.4)

A

IS THE SAME AS

A
B

IS THE SAME AS

A
B

IS THE SAME AS

IS THE SAME AS