CMPE12/L: Introduction to Computer Organization and Assembly Language
General Information and Syllabus

Winter 2005
T-Th 10:00-11:45 AM
Class: Kresge College Room 327

Instructor: Gabriel Hugh Elkaim
E-mail: elkaim@soe.ucsc.edu
Office: Engineering 2 (E2), 337B
Hours: T-Th 2:00-4:00 PM
Phone: (831) 459-3054 (Office)
 (831) 421-9098 (Home: 10AM to 9PM please)

TAs and Tutors:

Joseph Nayfach-Battilan: jnayfach@ucsc.edu
Andrew Hill: awhill@cats.ucsc.edu

Textbooks (also in the library on reserve):

“The Happy Assembly Class: CMPE12C Course Reader” by Carey, McIntire, Ferguson, and Hughey. Available as a PDF file on the website.

WWW site and WebForum

Website: www.soe.ucsc.edu/classes/cmpe12/Winter05

Check this site often as this is where the homework assignments, lecture notes, labs, homework and test solutions, and lecture videos are posted. You are expected to read the material on the website.
Videos: As an experiment in teaching technology, the instructor will be capturing both the audio and screen from the course in real-time. This will later be posted to the website. While every attempt will be made to capture the classes, as this is a new technology, there are no guarantees. Also, while watching the video should be a great way to review course material, if you are not in class you cannot ask questions and/or clarifications. Further, if too few students show up for lectures, the instructor may restrict access to class videos.

WebForum: http://apps.soe.ucsc.edu/forums/

Use the webforum to post questions to the tutors and the TAs about lab and class work. Use it to ask questions of other students. Do not expect quick replies from the instructor, use e-mail for that. Do NOT post code onto the webforum.

Course Work: CMPE 12

Attendance is highly recommended for the lectures as the material builds up quickly. Note, however, that attendance is not required, except for the midterm and the final. Please see the website for details of what is expected of you. Lecture material will be made available on the website, usually before covered in class. Annotated lecture notes and videos of the lecture will be posted after class in a timely fashion (see note on video above).

There will be weekly homework assignments that are both required and graded. There will one in class midterm exam, and one comprehensive final exam. The midterm and exam material will be based on homework and lecture material. **No calculators are ever allowed for any exam, using one will be considered cheating.**

Lab Work: CMPE 12 L

You must be enrolled in CMPE 12L to remain in this class unless you have previously taken and passed the lab class. You must pass CMPE 12 to pass CMPE 12L. You will receive the same grade for both the lab and the class, and thus cannot pass one without passing the other.

We will be working with two assembly languages in this course based on two processors: a 16-bit RISC processor called the LC-3 and a small 8-bit microcontroller from Motorola, the HC11. See the class website for more information on the lab.

There will be lab assignments throughout the quarter that will require you to write assembly language programs for one of the two types of processors that we use. No collaboration is allowed on programming assignments unless explicitly permitted in the lab assignment. When permitted, collaboration is allowed only with current staff and students of CMPE12C. Credit for collaboration should be explicitly noted; failure to give credit on collaboration is considered a form of cheating and will be dealt with accordingly. **You are NOT allowed to share code at any point.**

Grading

You will receive the same grade for both the lab and the class, and thus cannot pass one without passing the other. The course grade is the weighted average of the following criteria:

Homeworks 10% Note, not all homeworks are equally weighted.
Midterm 20% 08 Feb 2005, in class
Labs 30%
Final Exam 40% 17 Mar 2005, 4:00 – 7:00 PM

If you have any disability-related needs, be sure to contact the Disability Resource Center well in advance of any expected need.

Academic Honesty

Academic honesty is a requirement for the course. All assignments must be your own independent work; this includes homework, exams, and labs.

What is cheating? It is presenting work that is not yours as your own. Using calculators on exams, using unauthorized reference materials, reproducing the solution off of an old homework are all unacceptable. You can, and are encouraged to, discuss and strategize with your colleagues on homeworks and labs, but your work should be your own. Copying is NEVER acceptable.

On the labs, cheating is sharing code when not explicitly told that it is permitted. Submitted labs are electronically compared to all other labs, including past labs for similarities. The code checker tool checks all assignments for common cheating practice, renaming variables, moving code sections, changing comments and other formatting changes.

If a student is caught cheating in either the class or the lab this will result in an immediate failure in the class and the lab. It will be reported to your college and your department. DO NOT CHEAT; it is not worth it.

Acknowledgements

I would like to acknowledge the help of Prof. Ed Carryer of Stanford University in pioneering this video capture technology, and helping me to set this up. I would also like to thank Cyrus Bazeghi and Tracy Larabee for the website material, syllabus, course PowerPoint presentations, and help in setting up this class.