More Integer Numbers
Integer Representation

Assume our representation has a fixed number of bits n (e.g. 32 bits).

- Which 4 billion integers do we want?
 - There are an infinite number of integers less than zero and an infinite number greater than zero.

- What bit patterns should we select to represent each integer AND where the representation:
 - Does not affect the result of calculation
 - Does dramatically affect the ease of calculation

- Convert to/from human-readable representation as needed.
Integer Representation

Usual answers:

1. Represent 0 and consecutive positive integers
 • Unsigned integers
2. Represent positive and negative integers
 • Signed magnitude
 • One’s complement
 • Two’s complement
 • Biased

Unsigned and two’s complement the most common
Signed Magnitude Integers

- A human readable way of getting both positive and negative integers.
- Not well suited to hardware implementation.
- But used with floating point.
Signed Magnitude Integers

Representation:

- Use 1 bit of integer to represent the sign of the integer
 - Sign bit is msb: 0 is “+”, 1 is “−”
- Rest of the integer is a magnitude, with same encoding as unsigned integers.
- To get the additive inverse of a number, just flip (invert, complement) the sign bit.
- Range: \(-(2^{n-1} - 1)\) to \(2^{n-1} - 1\)
Signed Magnitude - Example

If 4 bits then range is:
\[-2^3 + 1 \text{ to } 2^3 - 1\]
which is \(-7 \text{ to } +7\)

Questions:
• 0101 is ? 5
• -3 is ? 11 1011
• +12 is ?
• \([-7, \ldots, -1, 0, +1, \ldots, +7]\) = 7 + 1 + 7 = 15 < 16 = 2^4
 • Why? ± 0
 • What problems does this cause?
 1000 0000

Maxwell James Dunne
One’s Complement

• Historically important (in other words, not used today!!!)
• Early computers built by Semour Cray (while at CDC) were based on 1’s complement integers.
• Positive integers use the same representation as unsigned.
 • 0000 is 0
 • 0111 is 7, etc
• Negation is done by taking a bitwise complement of the positive representation.
 • Complement = Invert = Not = Flip = {0 -> 1, 1 -> 0}
 • A logical operation done on a single bit
• Top bit is sign bit
One’s Complement Representation

To get 1’s complement of -1
• Take +1: 0001
• Complement each bit: 1110
• Don’t add or take away any bits.

Another example (4-bits):
• 1100
 • This must be a negative number. To find out which, find the inverse!
 • 0011 is +3
 • 1100 in 1’s Complement must be? -3

Properties of 1’s complement:
• Any negative number will have a 1 in the MSB
• There are 2 representations for 0; 0000 and 1111
Biased Representation

An integer representation that skews the bit patterns so as to look just like unsigned but actually represent negative numbers.

Example: 4-bit, with BIAS of 2^3 (or called Excess 8)
- True value to be represented: 3
- Add in the bias: +8
- Unsigned value: 11

The bit pattern of 3 in biased-8 representation will be 1011
Suppose we were given a biased-8 representation, 0110, to find what the number represented was:

Unsigned 0110 represents 6
Subtract out the bias -8
True value represented -2

Operations on the biased numbers can be unsigned arithmetic but represent both positive and negative values.

How do you add two biased numbers? Subtract?
Biased Representation

Exercises, what are these in decimal?

25_{10} in excess 100 is: $25 + 100 = 125$
52_{10, excess 127} is: $52 - 127 = -75$
101101_{2, excess 31} is: $32 + 8 + 4 + 1 = 45 - 31 = 14$
1101_{2, excess 31} is: $13 - 31 = -18$
Biased Representation

Where is the sign “bit” in excess notation? Bias notation used in floating-point exponents.

Choosing a bias:
To get an equal distribution of values above and below 0, the bias is usually 2^{n-1} or $2^{n-1} - 1$.

Range of bias numbers?
Depends on bias, but contains 2^n different numbers.
\[N + b = N + b \]
\[x, y \implies x + b, y + b \]
\[x + b + y + b = x + y + 2b (-b) \]
\[(x + b) - (y + b) = x + b - y - b \]
\[= x - y \]
Sign Extension

How to change a number with a smaller number of bits into the same number (same representation) with a larger number of bits?

This must be done frequently by arithmetic units
Sign Extension – signed magnitude

Signed magnitude:

Copy the original integer’s magnitude into the LSBs & put the original sign into the MSB, put 0’s elsewhere.

Thus for 6 bits to 8 bits

sxxxxx -> s00xxxxx
Sign Extension – 1SC

1’s complement:

1. Copy the original n-1 bits into the LSBs
2. Take the MSB of the original and copy it elsewhere

Thus for 6 bits to 8 bits:

sxxxxx → sssxxxxx
Addition: sign magnitude

- Add magnitudes only, just like unsigned addition
- Do not carry into the sign bit
- If a carry out of the MSB of magnitude then overflowed
- Add only integers of like sign ("+ to +" OR "- to -")
- Sign of the result is same as sign of the addends
Examples:

\[
\begin{align*}
0 & 0101 (5) \\
+ & 0011 (3) \\
\hline & 1000 (8)
\end{align*}
\]

\[
\begin{align*}
1 & 1010 (-10) \\
+ & 10011 (-3) \\
\hline & 1101 (-13)
\end{align*}
\]

\[
\begin{align*}
0 & 01011 (11) \\
+ & 101110 (-14) \\
\hline & (-3)
\end{align*}
\]

Not addition! This is subtraction.
\[-x - 1 = -x + 1\]
\[-x + 1 = -(x - 1)\]
Subtraction: sign magnitude

• If signs are different, then change the problem to addition
• If the signs are the same then do subtraction
 • compare magnitudes
 • subtract smaller from larger
• if the order was switched, then switch the sign of the result
Overflow in Addition

Unsigned: When there is a carry out of the MSB

\[
\begin{array}{c}
1000 \ (8) \\
+1001 \ (9) \\
\hline
10001 \ (1)
\end{array}
\]
Signed magnitude: When there is a carry out of the MSB of the magnitude

\[\begin{array}{c}
1 \ 1000 \ (-8) \\
+1 \ 1001 \ (-9) \\
\hline
1 \ 0001 \ (-1)
\end{array} \]

carry out from MSB of magnitude
Overflow in SM Subtraction

Signed magnitude: never happens when actually doing subtraction
Fractional Binary
Positional Fractions

Mesopotamians used positional fractions

\[
\sqrt{2} = \frac{60}{1} + \frac{1}{60} + \frac{1}{60^2}
\]

\[
1.24,51,10_{60} = 1 \times 60^0 + 24 \times 60^{-1} + 51 \times 60^{-2} + 10 \times 60^{-3}
\]

\[
= 1.414222
\]

Most accurate approximation until the Renaissance
3.14

$1 \cdot \frac{1}{10} + 4 \cdot \frac{1}{100}$

Generalized Representation

For a number “f” with “n” digits to the left and “m” to the right of the decimal place

Position is the power

Decimal point

radix

fn-1 fn-2 ... f2 f1 f0

f-1 f 2 f3 ... fm-1
Fractional Representation

- What is $3E.8F_{16}$?

 \[
 = 3 \times 16^1 + E \times 16^0 + 8 \times 16^{-1} + F \times 16^{-2}
 \]

 \[
 = 48 + 14 + 8/16 + 15/256
 \]

- How about 10.101_2?

 \[
 = 1 \times 2^1 + 0 \times 2^0 + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3}
 \]

 \[
 = 2 + 0 + 1/2 + 1/8
 \]
Converting Decimal -> Binary fractions

- Consider left and right of the decimal point separately.
- The stuff to the left can be converted to binary as before.
- Use the following table/algorithm to convert the fraction
For 0.8_{10} to binary

<table>
<thead>
<tr>
<th>Fraction</th>
<th>Fraction x 2</th>
<th>Digit left of decimal point</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.8</td>
<td>1.6</td>
<td>1 ← most significant (f_1)</td>
</tr>
<tr>
<td>0.6</td>
<td>1.2</td>
<td>1</td>
</tr>
<tr>
<td>0.2</td>
<td>0.4</td>
<td>0</td>
</tr>
<tr>
<td>0.4</td>
<td>0.8</td>
<td>0</td>
</tr>
<tr>
<td>0.8</td>
<td>(it must repeat from here!!)</td>
<td></td>
</tr>
</tbody>
</table>

- Different bases have different repeating fractions.
- $0.8_{10} = 0.110011001100\ldots_2 = 0.1100_2$
- Numbers can repeat in one base and not in another.
What is 2.2_{10} in:

- Binary
- Hex

\[
\begin{align*}
0.2 \times 2 &= 0.4 \\
0.4 \times 2 &= 0.8 \\
0.8 \times 2 &= 1.6 \\
0.6 \times 2 &= 1.2 \\
.2 &
\end{align*}
\]
2.33

What is 2.2_{10} in:

- Binary
- Hex

\[.2 \times 16 = 3.2 \]
\[.2 \times 16 = 3.2 \]
0.625 \rightarrow \text{binary:}\ 0.101

0.625 \times 2 = 1.25
0.25 \times 2 = 0.5
0.5 \times 2 = 1.0
0.15 \rightarrow \text{binary}

0.001001

0.15 \times 2 = 0.3
0.3 \times 2 = 0.6
0.6 \times 2 = 1.2
0.2 \times 2 = 0.4
0.4 \times 2 = 0.8
0.8 \times 2 = 1.6
Power of Two Accuracy

<table>
<thead>
<tr>
<th>Power</th>
<th>Number</th>
<th>Power</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>-17</td>
<td>7.63E-06</td>
</tr>
<tr>
<td>-1</td>
<td>0.5</td>
<td>-18</td>
<td>3.81E-06</td>
</tr>
<tr>
<td>-2</td>
<td>0.25</td>
<td>-19</td>
<td>1.91E-06</td>
</tr>
<tr>
<td>-3</td>
<td>0.125</td>
<td>-20</td>
<td>9.54E-07</td>
</tr>
<tr>
<td>-4</td>
<td>0.0625</td>
<td>-21</td>
<td>4.77E-07</td>
</tr>
<tr>
<td>-5</td>
<td>0.03125</td>
<td>-22</td>
<td>2.38E-07</td>
</tr>
<tr>
<td>-6</td>
<td>0.015625</td>
<td>-23</td>
<td>1.19E-07</td>
</tr>
<tr>
<td>-7</td>
<td>0.0078125</td>
<td>-24</td>
<td>5.96E-08</td>
</tr>
<tr>
<td>-8</td>
<td>0.00390625</td>
<td>-25</td>
<td>2.98E-08</td>
</tr>
<tr>
<td>-9</td>
<td>0.001953125</td>
<td>-26</td>
<td>1.49E-08</td>
</tr>
<tr>
<td>-10</td>
<td>0.000976563</td>
<td>-27</td>
<td>7.45E-09</td>
</tr>
<tr>
<td>-11</td>
<td>0.000488281</td>
<td>-28</td>
<td>3.73E-09</td>
</tr>
<tr>
<td>-12</td>
<td>0.000244141</td>
<td>-29</td>
<td>1.86E-09</td>
</tr>
<tr>
<td>-13</td>
<td>0.00012207</td>
<td>-30</td>
<td>9.31E-10</td>
</tr>
<tr>
<td>-14</td>
<td>6.10352E-05</td>
<td>-31</td>
<td>4.66E-10</td>
</tr>
<tr>
<td>-15</td>
<td>3.05176E-05</td>
<td>-32</td>
<td>2.33E-10</td>
</tr>
<tr>
<td>-16</td>
<td>1.52588E-05</td>
<td>-33</td>
<td>1.16E-10</td>
</tr>
</tbody>
</table>
Power of 16 Accuracy

<table>
<thead>
<tr>
<th>Power</th>
<th>Number</th>
<th>Power</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>-17</td>
<td>3.39E-21</td>
</tr>
<tr>
<td>-1</td>
<td>0.0625</td>
<td>-18</td>
<td>2.12E-22</td>
</tr>
<tr>
<td>-2</td>
<td>0.00390625</td>
<td>-19</td>
<td>1.32E-23</td>
</tr>
<tr>
<td>-3</td>
<td>0.000244141</td>
<td>-20</td>
<td>8.27E-25</td>
</tr>
<tr>
<td>-4</td>
<td>1.52588E-05</td>
<td>-21</td>
<td>5.17E-26</td>
</tr>
<tr>
<td>-5</td>
<td>9.53674E-07</td>
<td>-22</td>
<td>3.23E-27</td>
</tr>
<tr>
<td>-6</td>
<td>5.96046E-08</td>
<td>-23</td>
<td>2.02E-28</td>
</tr>
<tr>
<td>-7</td>
<td>3.72529E-09</td>
<td>-24</td>
<td>1.26E-29</td>
</tr>
<tr>
<td>-8</td>
<td>2.32831E-10</td>
<td>-25</td>
<td>7.89E-31</td>
</tr>
<tr>
<td>-9</td>
<td>1.45519E-11</td>
<td>-26</td>
<td>4.93E-32</td>
</tr>
<tr>
<td>-10</td>
<td>9.09495E-13</td>
<td>-27</td>
<td>3.08E-33</td>
</tr>
<tr>
<td>-11</td>
<td>5.68434E-14</td>
<td>-28</td>
<td>1.93E-34</td>
</tr>
<tr>
<td>-12</td>
<td>3.55271E-15</td>
<td>-29</td>
<td>1.2E-35</td>
</tr>
<tr>
<td>-13</td>
<td>2.22045E-16</td>
<td>-30</td>
<td>7.52E-37</td>
</tr>
<tr>
<td>-14</td>
<td>1.38778E-17</td>
<td>-31</td>
<td>4.7E-38</td>
</tr>
<tr>
<td>-15</td>
<td>8.67362E-19</td>
<td>-32</td>
<td>2.94E-39</td>
</tr>
<tr>
<td>-16</td>
<td>5.42101E-20</td>
<td>-33</td>
<td>1.84E-40</td>
</tr>
</tbody>
</table>
Binary Division Example

\[\frac{12.75}{8.21} \]

\[\begin{array}{c}
0011.11010 \\
11 \overline{1011} .1100000 \\
\hline
100 \\
\hline
100 \\
\hline
-111 \\
\hline
101 \\
\hline
-101 \\
\hline
100 \\
\hline
-100 \\
\hline
1
\end{array} \]
Floating Point Numbers
- Registers for real numbers usually contain 32 or 64 bits, allowing 2^{32} or 2^{64} numbers to be represented.
- Which reals to represent? There are an infinite number between 2 adjacent integers. (or two reals!!)
- Which bit patterns for reals selected?
- Answer: use scientific notation
Consider: $A \times 10^B$, where A is one digit

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>$A \times 10^B$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>any</td>
<td>0</td>
</tr>
<tr>
<td>1..9</td>
<td>0</td>
<td>1..9</td>
</tr>
<tr>
<td>1..9</td>
<td>1</td>
<td>10..90</td>
</tr>
<tr>
<td>1..9</td>
<td>2</td>
<td>100..900</td>
</tr>
<tr>
<td>1..9</td>
<td>-1</td>
<td>0.1..0.9</td>
</tr>
<tr>
<td>1..9</td>
<td>-2</td>
<td>0.01..0.09</td>
</tr>
</tbody>
</table>

How to do scientific notation in binary? Standard: **IEEE 754 Floating-Point**
IEEE 754 Single Precision Floating Point Format

Representation:

```
31 30 23 22 0
S   E   F
```

- **S** is one bit representing the sign of the number
- **E** is an 8 bit biased integer representing the exponent
- **F** is an 23-bit unsigned integer

The true value represented is: \((-1)^S \times f \times 2^e\)

- **S** = sign bit
- **e** = E - bias
- **f** = F/2^n + 1
 - for single precision numbers n=23, bias=127
S, E, F are all fields within a representation. Each is just a bunch of bits.

S is the sign bit
- \((-1)^S \rightarrow (-1)^0 = +1\) and \((-1)^1 = -1\)
- Just a sign bit for signed magnitude

E is the exponent field
- The E field is a biased-127 representation.
- True exponent is \((E - bias)\)
- The base (radix) is always 2 (implied).
- Some early machines used radix 4 or 16 (IBM)
\[\begin{array}{c}
0001.101 \\
\hline
1.101
\end{array} \]

\textbf{F (or M)} is the fractional or mantissa field.

- It is in a strange form.
- There are 23 bits for F.
- A normalized FP number always has a leading 1.
- No need to store the one, just assume it.
- This MSB is called the HIDDEN BIT.
How to convert 64.2 into IEEE SP

1. Get a binary representation for 64.2
 - Binary of left of radix point is: 10000000
 - Binary of right of radix:
 \[
 \begin{align*}
 .2 \times 2 &= 0.4 & 0 \\
 .4 \times 2 &= 0.8 & 0 \\
 .8 \times 2 &= 1.6 & 1 \\
 .6 \times 2 &= 1.2 & 1
 \end{align*}
 \]
 - Binary for .2: \(0011\)
 - 64.2 is: \(1.0000000\overline{0011} \times 2^0\)

2. Normalize binary form
 - Produces:
 \(1.0000000\overline{0011} \times 2^6\)
Floating Point

64.199999

3. Turn true exponent into bias-127
 \[6 + 127 = 133 = 100000101\]

4. Put it together:
 - 23-bit F is: \[000000 \overline{0111} 0011 0011 0011 0\]
 - S E F is: \[\overline{01000101} 00000000011100101100110\]
 - In hex: \[042806666\]

Since floating point numbers are always stored in normal form, how do we represent 0?
- 0x0000 0000 and 0x8000 0000 represent 0.
Other special values:
- \(+ \frac{5}{0} = \infty\)
- \(+\infty\) = 0 11111111 00000... (0x7f80 0000)
- \(-\frac{7}{0} = -\infty\)
- \(-\infty\) = 1 11111111 00000... (0xff80 0000)
- \(0/0\) or \(+\infty\) \(-\infty\) = NaN (Not a number)
- NaN ? 11111111 ???????...
 (S is either 0 or 1, E=0xff, and F is anything but all zeroes)
- Also de-normalized numbers (beyond scope)
What is the decimal value for this SP FP number 0x4228 0000?

\[
\begin{align*}
\underline{0100 0010} & \quad 010101000 \quad 0 \\
128 + 4 & = 132 \\
132 - 127 & = 5
\end{align*}
\]

\[
1.01010 \times 2^5
\]

101010 = 42
What is -47.625_{10} in SP FP format?

\[101111.101 \times 2^3 \]

\[1.011111101 \times 2^5 \]

\[S + 127 = 132 = 100000100 \]

\[1100001000 \quad 011111001000 \]

\[\langle 2 \quad 3 \quad E \quad 8 \quad 000 \rangle \]
\[0.5 \]

\[0.1 \times 2^0 \]

\[1.0 \times 2^{-1} \]

\[127 - 1 = 126 \]

\[0111111110 \]

\[\rightarrow \]

\[00011111100 \]

\[\Rightarrow \]

\[3F00000000 \]

\[0 \]
What do floating-point numbers represent?

- Rational numbers with non-repeating expansions in the given base within the specified exponent range.
- They do not represent repeating rational or irrational numbers, or any number too small or too large.
IEEE Double Precision FP

- IEEE Double Precision is similar to SP
 - 52-bit M
 - 53 bits of precision with hidden bit
 - 11-bit E, excess 1023, representing \(-1023 \leftrightarrow 2046\)
 - One sign bit

- Always use DP unless memory/file size is important unless on a microcontroller
 - SP $\sim 10^{-38} \ldots 10^{38}$
 - DP $\sim 10^{-308} \ldots 10^{308}$

- Be **very** careful of these ranges in numeric computation
Floating Point Arithmetic

Floating Point operations include
- Addition
- Subtraction
- Multiplication
- Division

They are complicated because...
Floating Point Addition

Decimal Review

9.997 \times 10^2
+ 4.631 \times 10^{-1}

How do we do this?

1. Align decimal points
2. Add

\[
\begin{align*}
9.997 \times 10^2 \\
+ 0.004631 \times 10^2 \\
\hline
10.001631 \times 10^2
\end{align*}
\]

3. Normalize the result
 - Often already normalized
 - Otherwise move one digit

\[
1.0001631 \times 10^3
\]

4. Possibly round result

\[
1.000 \times 10^3
\]
Example: $0.25 + 100$ in SP FP

First step: get into SP FP if not already

\[.25 = 0 \ 01111101 \ 0000000000000000000000000 \]
\[100 = 0 \ 10000101 \ 1001000000000000000000000 \]

Or with hidden bit

\[.25 = 0 \ 01111101 \ 1 \ 0000000000000000000000000 \]
\[100 = 0 \ 10000101 \ 1 \ 1001000000000000000000000 \]
Second step: Align radix points

- Shifting F left by 1 bit, **decreasing** e by 1
- Shifting F right by 1 bit, **increasing** e by 1
- Shift F right so least significant bits fall off
- Which of the two numbers should we shift?
9.9000000 ←
+ 0.0200000 →

1011000000101001
Second step: Align radix points cont.

Shift the .25 to increase its exponent so it matches that of 100.

\[
\begin{align*}
0.25's\ e: &\ 01111101 - 1111111 \ (127) = -2 \\
100's\ e: &\ 10000101 - 1111111 \ (127) = 6
\end{align*}
\]

Shift .25 by 8 then.

Easier method: Bias cancels with subtraction, so

\[
\begin{align*}
10000101 \\
- 01111101 \\
\hline
00001000
\end{align*}
\]
Carefully shifting the 0.25’s fraction

<table>
<thead>
<tr>
<th>S</th>
<th>E</th>
<th>HB</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>000</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1111110</td>
<td>1</td>
<td>00</td>
</tr>
<tr>
<td>0</td>
<td>1111111</td>
<td>0</td>
<td>00</td>
</tr>
<tr>
<td>0</td>
<td>0000000</td>
<td>0</td>
<td>00</td>
</tr>
</tbody>
</table>

(original value)
(shifted by 1)
(shifted by 2)
(shifted by 3)
(shifted by 4)
(shifted by 5)
(shifted by 6)
(shifted by 7)
(shifted by 8)
Third Step: Add fractions with hidden bit

\[
\begin{array}{c}
0 \ 10000101 \ 1 \ 10010000000000000000000000000000 \\
+ \ 0 \ 10000101 \ 0 \ 000000010000000000000000 \\
\hline
0 \ 10000101 \ 1 \ 10010001000000000000000000000000
\end{array}
\]

(100) + (.25) = (100.25)

Fourth Step: Normalize the result

- Get a ‘1’ back in hidden bit
- Already normalized most of the time
- Remove hidden bit and finished
Normalization example

\[
\begin{array}{c|c|c|c|c}
S & E & HB & F \\
0 & 011 & 1 & 1100 \\
\hline
+ & 011 & 1 & 1011 \\
0 & 011 & 11 & 0111 \\
\end{array}
\]

Need to shift so that only a 1 in HB spot

\[
\begin{array}{c|c|c|c|c|c}
0 & 100 & 1 & 1011 & 1 \rightarrow \text{discarded} \\
\end{array}
\]
\[(2 - 2)! = 0 \]

\[x = 1 \]

\[\text{abs}(x - 4) < \varepsilon \]

\[\varepsilon = 0.00001 \]
Floating Point Subtraction

- Mantissa’s are sign-magnitude
- Watch out when the numbers are close

\[
\begin{array}{c}
1.23455 \times 10^2 \\
- 1.23456 \times 10^2 \\
\end{array}
\]

- A many-digit normalization is possible
 This is why FP addition is in many ways more difficult than FP multiplication
Steps to do subtraction

1. Align radix points
2. Perform sign-magnitude operand swap if needed
 - Compare magnitudes (with hidden bit)
 - Change sign bit if order of operands is changed.
3. Subtract
4. Normalize
5. Round
Simple Example:

<table>
<thead>
<tr>
<th>S</th>
<th>E</th>
<th>HB</th>
<th>F</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>011</td>
<td>1</td>
<td>1011</td>
<td>smaller</td>
</tr>
<tr>
<td>-</td>
<td>0</td>
<td>011</td>
<td>1</td>
<td>1101</td>
</tr>
</tbody>
</table>

switch order and make result negative

<table>
<thead>
<tr>
<th>S</th>
<th>E</th>
<th>HB</th>
<th>F</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>011</td>
<td>1</td>
<td>1101</td>
<td>bigger</td>
</tr>
<tr>
<td>-</td>
<td>0</td>
<td>011</td>
<td>1</td>
<td>1011</td>
</tr>
<tr>
<td>1</td>
<td>011</td>
<td>0</td>
<td>0010</td>
<td></td>
</tr>
</tbody>
</table>

1 0000 1 0000 switched sign, renormalized
Floating Point Multiplication

Decimal example:

\[
3.0 \times 10^1 \\
\times 5.0 \times 10^2
\]

How do we do this?

1. Multiply mantissas
 \[
 \frac{3.0}{5.0} \\
 \frac{15.00}{15.00}
 \]
2. Add exponents
 \[
 1 + 2 = 3
 \]
3. Combine
 \[
 15.00 \times 10^3
 \]
4. Normalize if needed
 \[
 1.50 \times 10^4
 \]
Multiplication in binary (4-bit F)

\[
\begin{array}{c}
0 \ 10000100 \ 0100 \\
\times \ 1 \ 00111100 \ 1100
\end{array}
\]

Step 1: Multiply mantissas (put hidden bit back first!!)

\[
\begin{array}{c}
1.0100 \\
\times \ 1.1100
\end{array}
\]

\[
\begin{array}{c}
00000 \\
00000 \\
10100 \\
10100 \\
+ \ 10100
\end{array}
\]

\[
\begin{array}{c}
1000110000
\end{array}
\]

\[
10.00110000
\]
Second step: Add exponents, subtract extra bias.

\[
\begin{array}{c}
10000100 \\
+ 00111100 \\
\hline
11000000
\end{array}
\quad \begin{array}{c}
11000000 \\
- 01111111 \\
\hline
01000001
\end{array}
\text{(127)}

Third step: Renormalize, correcting exponent

1 01000001 10.00110000

Becomes

1 01000010 1.000110000

Fourth step: Drop the hidden bit

1 01000010 000110000

= 0xA10C0000
Multiply these SP FP numbers together

\[
0x49FC0000 \\
\times 0x4BE00000
\]

\[
0xB535F800
\]
Floating Point Division

- True division
 - Unsigned, full-precision division on mantissas
 - This is much more costly (e.g. 4x) than mult.
 - Subtract exponents
- Faster division
 - Newton’s method to find reciprocal
 - Multiply dividend by reciprocal of divisor
 - May not yield exact result without some work
 - Similar speed as multiplication
- Not covered in this class!
Floating Point Summary

- Has 3 portions, S, E, F/M
- Do conversion in parts
- Arithmetic is signed magnitude
- Subtraction could require many shifts for renormalization
- Multiplication is easier since do not have to match exponents