Digital Logic: From Transistors to Gates

Textbook Chapter 3
Announcements

- Auxiliary Website is up
 - https://classes.soe.ucsc.edu/cmpe012/Fall15/
- HW #1 extended until Tuesday
- Too Many Lab Swaps for me to handle myself
 - Find a partner and fill out google form. I will send confirmation for the switch
 - http://goo.gl/forms/d5ul67AwaO
- If you are still on the waitlist fill out the form up front before you leave
MSI

Mon 2-3:10 PM
Tu 12-1:15 PM
Wed 12:30-1:40 PM, 3:30-4:40 PM
Th 4-5:15 PM
Fri 3:30-4:40 PM
The Transistor

- Transistor: building block of computers
- Microprocessors contain tons of transistors
 - Intel Core i7-5960X (2015): 2.6 Billion
 - Qualcomm Snapdragon 810 (2015): multi billions
 - AMD 6-core Opteron (2009): 904 million
 - Intel Core i7 Quad (2008): 731 million
 - Intel Itanium 2 (2003): 220 million
 - Intel Pentium 4 (2000): 42 million
 - Intel 4004 (1971): 2300
The Transistor: Past and Present

- 1947 first point-contact transistor
Moore's Law

Microprocessor Transistor Counts 1971-2011 & Moore's Law

"The number of transistors on a chip will double about every 18 months."

Maxwell James Dunne – Fall 2015
What Is a Transistor?

- A switch, which can close between the source and the drain
- Changing the voltage of the gate lets you change the current flow between the source and drain (closing or opening the switch)
- Think of a light switch, the gate is the switch that allows electricity to flow from the source to the drain
Metal-Oxide-Semiconductor transistor

NMOS Transistor (n-channel MOSFET)

Silicon Dioxide (insulator)

source

gate

drain

gate electrode

p-type silicon

n-type silicon

Silicon Substrate
FinFET

- Higher performance at lower voltages
- Less power

(a) Conventional planar transistor

(b) FinFET
What is a transistor?

- Logically, each transistor is used as a switch
- Combined to implement logic functions
 - AND, OR, NOT
- Combined to build higher-level structures
 - Adder, multiplexer, decoder, register, ...
- Combined to build a processor
 - LC-3, Core i7, A9, etc
n-type MOS transistor

n-type MOS (nMOS)

- when Gate has **positive** voltage, short circuit between #1 and #2 (switch **closed**)
- when Gate has **zero** voltage, open circuit between #1 and #2 (switch **open**)

Terminal #2 must be connected to GND (0V).
p-type MOS transistor

p-type is *complementary* to n-type

- when Gate has positive voltage, open circuit between #1 and #2 (switch open)
- when Gate has zero voltage, short circuit between #1 and #2 (switch closed)

Terminal #1 must be connected to +2.9V in this example.
Digital Values for Analog Signals

- Use the switch behavior of MOS transistors to implement logical functions: AND, OR, NOT
- Digital symbols:
 - We assign a range of analog voltages to each digital (logic) symbol
 - Assignment of voltage ranges depends on electrical properties of transistors being used
CMOS circuit

- CMOS is Complementary Metal Oxide Semiconductor
- Uses both n-type and p-type MOS transistors
 - p-type (pMOS)
 - Attached to + voltage
 - Pulls output voltage UP when input is zero
 - n-type (nMOS)
 - Attached to GND
 - Pulls output voltage DOWN when input is one
- Faster than using just one type
Truth Table

- The most basic representation of a logic function
- It is a perfect induction proof - Lists the output for all possible input combinations
- How many rows of the truth table needed?

\[2^n \]
Truth Table: Inverter

- Inverted signals are denoted with an overbar
- Or with a prime symbol
 - A'
- Or with a bubble in a circuit diagram

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>$Y = A'$</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Maxwell James Dunne – Fall 2015
Inverter (NOT gate)

\[
\begin{array}{c|c}
\text{In} & \text{Out} \\
\hline
0 \text{ V} & 2.9 \text{ V} \\
2.9 \text{ V} & 0 \text{ V} \\
\end{array}
\]

\[
\begin{array}{c|c}
\text{In} & \text{Out} \\
\hline
0 & 1 \\
1 & 0 \\
\end{array}
\]
Truth Table: AND Gate

- The result of an AND operation is 1 if and only if all inputs are 1.
- Depict AND by the multiplication symbol
 - $A \cdot B$
- Or by lumping the signals together
 - AB
- We don’t really build these gates...

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>$Y = A \cdot B$</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
NAND gate (NOT-AND)

Note: Parallel structure on top, serial on bottom.
AND gate

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Add an inverter to a NAND.
Truth Table: OR Gate

- The result of an OR operation is 1 if and only if any inputs are 1
- Depict OR by the addition symbol
 \[A + B \]

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>A B</td>
<td>Y = A + B</td>
</tr>
<tr>
<td>0 0</td>
<td>0</td>
</tr>
<tr>
<td>0 1</td>
<td>1</td>
</tr>
<tr>
<td>1 0</td>
<td>1</td>
</tr>
<tr>
<td>1 1</td>
<td>1</td>
</tr>
</tbody>
</table>
NOR Gate: NOT-OR

Note: Serial structure on top, parallel on bottom.
OR gate

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Add an inverter to a NOR gate.
Digital Logic: Boolean Algebra and Gates

Textbook Chapter 3
Basic Logic Gates

- NOT
- OR
- NOR
- AND
- NAND
- XOR
\[
\begin{array}{c}
\text{a} \\
\text{b} \\
\text{c} \\
\text{d}
\end{array}
\]

\[
\begin{array}{c|c|c|c|c}
\text{a} & \text{b} & \text{c} & \text{d} & < \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 \\
\end{array}
\]
Truth Table

- The most basic representation of a logic function
- Lists the output for all possible input combinations
- How many rows of the truth table needed?
- Can get big very fast
Truth Table: Inverter

- Inverted signals are denoted with an overbar
- Or with a prime symbol
 - A'

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Truth Table: AND Gate

- The result of an AND operation is 1 if and only if all inputs are 1
- Depict AND by the multiplication symbol
 \(- A \cdot B\)
- Or by lumping the signals together
 \(- A \bar{B} \bar{C}\)
- We don’t really build these gates...

\[
(\overline{A + \overline{B}})(A + \overline{B})(\overline{A + B})
\]

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Truth Table: OR Gate

- The result of an OR operation is 1 if and only if any inputs are 1.
- Depict OR by the addition symbol: \(A + B \)

<table>
<thead>
<tr>
<th>(F = A + B)</th>
<th>(A)</th>
<th>(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Sum of Products

• How do you get from a truth table to a logic expression?
• Sum of products is standard way of synthesizing simple circuits
• Procedure:
 1. Find the rows with the ‘1’ output
 2. Write the product-form expression for the inputs in that row (0= inverted, 1= normal)
 3. Combine the products in step 2 into a sum (OR the results of step 2)
Sum of Products

1. Find the rows with the ‘1’ output
2. Write the product-form expression for the inputs in that row (0=inverted, 1=normal)
3. Combine the products in step 2 into a sum (OR the results of step 2)

\[Y = A'B + AB' \]
Product of Sums

• Procedure:
 1. Find the rows with the ‘0’ output
 2. Write the sum-form expression for the inputs in that row (0=normal, 1=inverted)
 3. Combine the sums in step 2 into a product (AND the results of step 2)

• Note: we treat 0 and 1 reverse than for SoP
Examples of SoP and PoS

\[
\begin{align*}
A & B & C & F \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 \\
\end{align*}
\]

\[
\bar{A} \bar{B} \bar{C} + A \bar{B} \bar{C} + \bar{A} B \bar{C} + \\
A B C \quad (A + B + \bar{C}) \quad (A + \bar{B} + C) \quad (A + \bar{B} + \bar{C}) \\
\bar{A} + \bar{B} + C
\]
Examples of SoP and PoS

\[\begin{array}{c|ccc}
A & B & C & \text{Output} \\
\hline
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 \\
\end{array} \]

\[\overline{AB} + \overline{A\bar{B}} \]

\[\begin{array}{c}
0 & 1 \\
\hline
0 & 1 \\
1 & 0 \\
\end{array} \]

\[(A + \bar{B}) \]

\[(\bar{A} + \bar{B}) \]
De Morgan’s Laws

• “Break the line, change the sign”

• Two laws:
 - $A' + B' = (AB)'$
 - This is the NAND gate
 - $A' B' = (A+B)'$
 - This is the NOR gate
De Morgan’s Laws

\[(A + B)' = A'B' \quad \text{conversely} \quad (AB)' = A' + B'\]

“Break the line, change the sign”

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>A+B</th>
<th></th>
<th>A</th>
<th>B</th>
<th>A⋅B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
De Morgan’s Laws

\[(A + B)' = A'B' \quad \text{conversely} \quad (AB)' = A' + B'\]

“Break the line, change the sign”

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>AB</th>
<th>(\overline{AB})</th>
<th>(\overline{A})</th>
<th>(\overline{B})</th>
<th>(\overline{A} + \overline{B})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
De Morgan’s Laws and SOP

- Generate equivalent circuits
 - NAND/NAND
 - NOR/NOR
- We prefer NAND/NAND circuits
 - Same transistor count as NOR
 - NANDs are faster
Logical Completeness

Can implement **ANY** truth table with AND, OR, NOT.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

1. AND combinations that yield a "1" in the truth table.
2. OR the results of the AND gates.
3. Is not necessarily a minimal solution.
More Than Two Inputs?

- AND and OR gates can take any number of inputs
 - AND gives 1 if all inputs are 1
 - OR gives 1 if any input is 1
- NAND?? NOR??
 - Not associative!
Two-Way Multiplexer
Two-Way Multiplexer

2-way multiplexer: the output is equal to one of the two inputs, based on a selector

<table>
<thead>
<tr>
<th>S</th>
<th>A</th>
<th>B</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Sum of Products Expression

$$Y = S'A'B' + S'A'B + S'AB' + S'AB + SA'B' + SA'B + SAB' + SAB$$
Four-Way Multiplexer

- \(n \)-bit selector and \(2^n \) inputs, one output
 - output equals one of the inputs, depending on selector
- "Four-to-one mux"
Two-to-Four Decoder

- n inputs, 2^n outputs
 - exactly one output is 1 for each possible input pattern
- Generates a walking-ones pattern
- Uses:
 - Convert memory or register address to a control line
 - Convert an opcode to one of n control lines
 - We will get to this in the LC-3 material
Binary Addition and Half-Adder

- $0 + 0 = 0$
- $0 + 1 = 1$
- $1 + 0 = 1$
- $1 + 1 = ...$

A half-adder can add 2 bits and produces a sum and carry signal

- Sum = $A \ xor \ B$
- Carry = AB
One-Bit Full Adder

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C<sub>in</sub></th>
<th>C<sub>out</sub></th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Four-Bit Full Adder

Ripple-carry adder
Masking

- Want to look only at certain bits of a binary word
- Use a mask to remove the uninteresting bits
- It is a bitwise AND operation with the MASK
- Example:

 | Value | 1001 1101 |
 | MASK | 0000 1111 |
 | Result| 0000 1101 |
Axioms of Boolean Algebra

- \(0 \cdot 0 = 0\)
- \(1 + 1 = 1\)
- \(1 \cdot 1 = 1\)
- \(0 + 0 = 0\)
- \(0 \cdot 1 = 1 \cdot 0 = 0\)
- \(1 + 0 = 0 + 1 = 1\)
- if \(x = 0\) then \(x' = 1\)
- if \(x = 1\) then \(x' = 0\)
Single-Variable Theorems

- \(x \cdot 0 = 0 \)
- \(x + 1 = 1 \)
- \(x \cdot 1 = x \)
- \(x + 0 = x \)
- \(x \cdot x = x \)
- \(x + x = 0 \)
- \(x \cdot x' = 1 \)
- \(x + x' = x \)
- \((x')' = \)
Properties of Boolean Algebra

- **Commutative**
 - $x \cdot y = y \cdot x$
 - $x + y = y + x$

- **Associative**
 - $x \cdot (y \cdot z) = (x \cdot y) \cdot z$
 - $x + (y + z) = (x + y) + z$

- **Distributive**
 - $x \cdot (y + z) = x \cdot y + x \cdot z$
 - $x + y \cdot z = (x + y) \cdot (x + z)$
Properties of Boolean Algebra

- **Absorption**

 \[x + x \cdot y = x(1+y) = x \]

 \[x \cdot (x + y) = xx + xy = x + xy = x(1+y) = x \]

- **Combining**

 \[x \cdot y + x \cdot y' = x(y + y') = x \]

 \[-(x + y) \cdot (x + y') = xx + xy' + yx + yy' \]

 \[= x + xy' + yx + 0 \]

 \[= x + x(y' + y) \]

 \[= x + x(1) \]

 \[= x + x = x \]
Properties of Boolean Algebra

- **De Morgan’s Laws**
 - \(-(x \cdot y)’ = x’ + y’\)
 - \-(x + y)’ = x’ \cdot y’\)

- **Other**
 - \-x + x’ \cdot y = (x + x’) \cdot (x + y) = x + y\)
 - \-x \cdot (x’ + y) = x \cdot x’ + x \cdot y = x \cdot y\)
Logic Minimization

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Sum of products

\[Y = A'B'C' + A'BC + AB'C' + ABC' \]

\[= A'(BC' + BC) + A(B'C' + BC') \]

\[= A'(B(C' + C)) + A(C'(B' + B)) \]

\[= A'B(1) + AC'(1) \]

\[= A'B + AC' \]
Combinational vs. Sequential

Two types of “combination” locks

Combinational
Success depends only on the values, not the order in which they are set.

Sequential
Success depends on the sequence of values (e.g., R-13, L-22, R-3).
Combinational vs. Sequential

• Combinational circuit
 – Always gives the same output for a given set of inputs
 – Example: Adder always generates sum and carry, regardless of previous inputs

• Sequential circuit
 – Remembers previous input
 – Output depends on state and input
Reset-Set (RS) Latch – or SR

- Two inputs: Set and Reset
- Set to 0 one of the two inputs at a time to store a value, S sets, R clears
- The transition to 00 generates an undefined output

<table>
<thead>
<tr>
<th>S</th>
<th>R</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Restricted combination</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Q = 1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Q = 0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Keep state</td>
</tr>
</tbody>
</table>
R-S Latch
D-Latch

- D-latch (D for data) is a gated RS latch
- Two inputs: D (data) and WE (write enable)
D-Latch: Timing Diagram
D-Flip-Flop

- Two D-latches hooked together
- Connect one latch to the inverted clock
- D-flip-flop is edge-triggered (changes only on the edge of the clock)
- Also called “edge-triggered d-latch”
- This is an example of an edge triggered DFF with an enable
D-Flip Flop: Timing Diagram

Diagram showing the timing of Ck, WE, D, and Q signals over time.
D-Flip Flops in a Pipeline

D

Q1

Q2

Ck

WE

E

D

Q

Q1

Q2

Ck

time

D

Q

Q1

Q2

Ck

time
Register

- A register stores a multi-bit value
- Common WE which latches the n-bit value
Memory

Now that we know how to store bits, we can build a memory – a logical $k \times m$ array of stored bits.

Address Space:
number of locations
(usually a power of 2)

Addressability:
number of bits per location
(e.g., byte-addressable)
2^2 x 3 Memory

- address
- word select
- word WE
- input bits
- write enable
- address decoder
- output bits
State Machine

The basic type of sequential circuit

- Combines combinational logic with storage
- “Remembers” state, and changes output (and state) based on inputs and current state
Example of sequential machine

Combinational lock R13, L22, R3:
Representing Multi-bit Values

- Number bits from right (0) to left (n-1)
 - just a convention -- could be left to right, but must be consistent
- Use brackets to denote range:
 D[l:r] denotes bit l to bit r, from left to right

\[
A = 0101001101010101
\]

\[
\]

May also see A<14:9>, especially in hardware block diagrams.