Computers: Tools for an Information Age

Chapter 3
Operating Systems: Software in the Background
Objectives of Chapter 3

- Describe the functions of an Operating System
- Explain the basics of a personal computer operating system
- Describe the advantages of a graphical operating system
- Differentiate among different operating systems
- Explain the need for network operating systems
- Describe the methods of resource allocation on large computers
- Be able to describe the differences among multiprocessing, multiprogramming, and timesharing
- Explain the principles of memory management
- List several functions typically performed by utility programs
Systems Software

- Definition:
 - All programs related to coordinating computer operations

- Components
 - Operating System
 - Utility programs
 - Program language translators
Operating Systems: Hidden Software

- Serves as intermediary between hardware and applications software
- User interested in application software to make the PC useful
- Application software is platform specific
- User must be aware of the type of OS
- User should be aware of the functions of OS
Operating System

- The set of programs that lies between applications software and the hardware and:
 - Manages computer’s resources (CPU, memory, peripheral devices)
 - Establishes a user interface
 - Determines how user interacts with operating system
 - Provides and executes services for applications software
Kernel

- Manages the operating system
 - Loaded from hard drive into memory when computer is booted
 - **Boot**ing refers to starting the computer
 - Loads other operating system programs from disk storage as needed
 - Other programs referred to as *nonresident*
User Interface

- Facilitates communication between the user and the operating system

- Two forms
 - Command line
 - Text-based
 - Key commands
 - Examples: MS-DOS, Unix
 - Graphical user interface (GUI) (pronounced “gooey”)
 - Visual images
 - Menus
 - Examples: X Windows (UNIX), MS Windows, Mac OS
Platform

- **Definition:**
 Computer hardware and operating system software that dictate what other software can run

- **Wintel (Windows/Intel)**
 Intel-based PC running MS Windows

- **SPARC (Sun Microsystems)**
 Sun based architecture running Solaris (UNIX)
Types of Operating Systems

- Interface
 - Command Line, GUI

- Single User
 - PC, MAC

- Multi-user
 - UNIX, Linux, Mainframe (Proprietary)

- Network(ed) Operating System (NOS)
Operating Systems for Personal Computers

- Platform: combination of computer hardware and operating system software
 - **Wintel** (Microsoft Windows running on an Intel-based PC) is most common

- Common Platforms
 - MS-DOS
 - Windows
 - MAC OS
 - Unix
 - Linux
MS-DOS

- Uses a command-line interface
 - Screen provides prompts for user
 - User types commands
- Largely replaced by graphical user interfaces
- Not user-friendly

Sample MS-DOS Commands

- `C:\> FORMAT A: Prepar... diskette on drive A: for use.
- `C:\> DIR A:DIR Lists the files on the diskette in drive A: (DIR stands for directory)
- `C:\> COPY MRKTDATA.SUM A: Copies file MRKTDATA.SUM on drive C to Drive A.
- `C:\> DEL A:SALESRPT.TXT Deletes file SALESRPT.TXT from drive A:
- `C:\> RENAME MRKTDATA.SUM SSDATA.CHT Renames the file MRKTDATA.SUM on drive C to SSDATA.CHT`
Microsoft Windows

- Began as an operating environment for MS-DOS
 - Not a full-blown operating system; required MS-DOS
- Uses a graphical user interface
 - Users can use DOS commands and interface
- Now a complete family of operating systems
MS-DOS Operating Environment

- Windows 3.1
- A layer added “on top” of DOS
 - Separates operating system from user
 - Makes operating system easier to use
- Called a *shell*
Graphical User Interface

- Eases access to the OS
- Most new computers come with Windows already installed
GUI (Graphical User Interface)

- Aka WIMP interface
 - Windows, Icons, Menus, Pointer
- On-screen pictures
 - Icons
 - Menus
 - Pull down
 - Pop up
 - Click to activate a command or function
- Fast and Easy
- Intuitive (usually)
Windows Features

- Long file names (up to 255 characters)
- Plug and Play
 - Makes installing hardware components easier
- Object Linking and Embedding (OLE)
 - Allows user to embed or link one document to another
The Windows Family

- Windows 9x
 - Windows 95
 - Windows 98
 - Windows Millennium Edition (ME)

- Corporate Market
 - Windows NT
 - Windows 2000

- Windows XP
- Windows CE
Windows 9x

- Serves home/consumer market
- No longer a shell, but a self-contained operating system
- Began with Windows 95
 - Next Generation:
 - Windows 98
 - Windows ME
- Many improvements over Windows 3.1
Windows 98 Enhancements

- Internet/intranet browsing capabilities
- Support for state-of-the-art hardware, including DVD and multimedia
- Support for larger disk drives
- Wizards: step-by-step software for installing, configuring, and using software
Windows ME Enhancements

- Multimedia support: Media Player, video editing
- Enhanced reliability features
- Home network support
Corporate Market

- Windows NT
 - NT stands for “new technology”
- Windows 2000
Windows NT

- Desktop looks and acts like Windows 98
- Meant for corporate, networked environments
 - Engineered for scalability (the ability to handle many users)
 - Stronger security
Windows 2000

- The latest generation of Windows NT
- One computer “serves” many users
 - You identify yourself and the system knows your preferences
 - You get “your” desktop and files, regardless of which PC you use to log into the network
Windows XP

- Brings consumer and corporate versions of Windows together into a single product
 - Has Home and Professional Editions
Windows XP Enhancements

- Improved user interface
 - Much clearer and uncluttered desktop
 - More icons on redesigned Start Menu
- Improved multimedia support
- More personalization
- Multiple user support
 - User can log off, leaving programs running, and allow another user to log on
 - Set up limited accounts for children to use; i.e., no inappropriate games or no Internet access
- Internet support and protection
Windows CE

- Scaled-back version of Windows 9x
 - Designed to work on machines with small screens and little, if any, storage
- Used in Pocket PCs
- Used in embedded systems
 - Computer devices integrated into other products; i.e., robots
- CE.NET supports .NET platform
MAC OS

- Designed for the Macintosh computer
- First commercially successful GUI
 - Has served as the model for Windows and other GUI products developed since then
UNIX

- Developed in 1971 for use on the DEC minicomputer
- Character-based system with command-line interface
- Not tied to any family of processors
 - Runs on just about every type of system (PC, mainframe, workstation) from any manufacturer
- Primary operating system in use on Internet servers
 - Handles many simultaneous users easily
Free BSD

- A Free, public domain version of Berkeley UNIX
- Open source software
 - GNU General Public License
 - Download it free
 - www.freebsd.org
 - Make changes and use freely
- XFree86 GUI included
- PC Setup
 - PC comes with Windows installed
 - Install FreeBSD in a dual-boot configuration
 - (or reformat drives and use only FreeBSD)
Linux

- Uses command-line interface
 - Many companies have created a GUI to work with Linux
- Open-source concept
 - Source code is free
 - Users can download, change, and distribute the software
- More stable than Windows
- Applications relatively scarce
- PC Setup
 - PC comes with Windows installed
 - Install LINUX in a dual-boot configuration
UNIX (FreeBSD, LINUX, etc)

- Advantages over Windows
 - Extremely stable
 - Internet support designed in from the beginning
 - UC Berkeley had early TCP/IP Unix distribution
 - Reinstallation is simpler

- Disadvantage
 - Scarcity of applications for new toys
Networked Operating Systems (NOS)

- Designed to permit computers on a network to share resources
- Examples
 - Windows 2000 Server
 - Novell Net Ware
 - UNIX – NFS...
- Provides
 - Data security
 - Troubleshooting
 - Administrative control
NOS Functions

- Split between client and server computers
- Server
 - File management
- Client
 - Requests to the server
 - Messaging
 - Has own local OS
- Makes the resources appear as if they are local to the client’s computer
Network Operating Systems

- Windows NT Server
- Windows 2000 Server
- Windows .NET Server
- Novell Netware
- Unix
- Linux
Operating Systems for Large Computers

- Resource allocation: assigning and computer resources to certain programs and processes for their use

- Main issues related to resource allocation
 - Sharing the Central Processing Unit
 - Sharing memory
 - Sharing storage resources
 - Sharing printing resources
Large Computer OS

- Used by many people at once
- OS works “behind the scenes” so users can share
- OS must control
 - Who gets access to resources
 - What keeps the programs from different users from getting mixed up with one another
Sharing the CPU

- Multiprocessing
- Multiprogramming
- Time-Sharing
Multiprocessing

- The use of a powerful computer with multiple CPUs
- Multiple programs run simultaneously
 - Each runs on its own processor
Multiprogramming (Multi-Tasking)

- Two or more programs executed concurrently
 - Programs take turns using the CPU
 - Event-driven
 - An interrupt suspends processing to allow another program to run
 - After the second program runs, the operating system returns the CPU to another program

- Used for real-time embedded processors and for batch programs that do not require user input
Event-driven *Multiprogramming Example*

- Two programs are running – Payroll and Inventory Management
- Payroll needs to read an employee record
- Payroll generates an interrupt to read from the disk
- Normal processing is temporarily suspended
- The CPU looks at the interrupt and initiates the read operation on the disk drive
- While waiting for the read to complete, the CPU begins processing the Inventory Management program
Event-driven *Multiprogramming Example*

- When the disk read operation is complete, another interrupt is generated.
- Normal processing is temporarily suspended.
- The CPU looks at the interrupt and determines its cause (read the data in from the disk drive for the Payroll program).
- The CPU will either continue processing the Inventory Management program or return to the Payroll program depending upon their priority.
Time-Sharing

- Programs take turns using the CPU
- Time-driven
 - Each user is given a slice of time (fraction of a second)
 - CPU works only on that user’s tasks during its time slice
 - Response time: the time between typed request and computer’s reply
- Typically used in applications with many users
Time-sharing *Multiprogramming*

- One program receives the attention of the CPU
- A small fraction of CPU time is allocated to the program
- The time slice ends
- The CPU begins processing a different program
- Response time can vary based upon the number of users on the system
Sharing Memory

- Program must be in memory to be executed

Problems
- Programs compete for space
- May have a very large program
- Memory space for each program must not overlap
Memory Management

- Divides memory into separate partitions
- Allocates memory to programs
- Keeps programs separate from one another
Partitions or Regions

- Divide memory into sections (i.e., partitions)
- The partition must accommodate the largest possible program
- Problem
 - May cause wasted memory space
Foreground and Background

- **Foreground**: for programs with high priority that will receive more CPU time.
 - For example: While performing read / write operations for the Foreground program, the CPU gives time to a program in Background

- **Background**: for programs with lower priority that will receive less CPU time
 - Programs waiting to run are kept in queues based on their priority
Virtual Storage

- Programs currently executed are stored on disk
 - Portions of program brought into memory as needed
 - Minimizes the amount of memory needed

- Can be implemented by *paging*
 - Divide memory into small, fixed-size pages
 - Page table keeps track of memory locations
Virtual Storage: Virtual Memory

- **Problem -- Thrashing**
 - A large portion of CPU time is spent swapping the correct page and bringing it into memory

- **Solution**
 - Run fewer programs concurrently
 - Add memory
 - Program design
 - “working set” size – number of pages required in memory for program to run
Memory Protection

- Keeps one program from straying into another

- Confines each program to certain defined limits in memory

Why needed
- Possible for one program to destroy or modify another by transferring to the wrong memory location
- May cause destruction of data

Action if assigned memory space is violated
- Termination of executing program
Sharing Storage Resources

- Keeps track of location of files
- Responds to commands to manipulate files
- Keeps track of input and output requests for files
 - Processes them in the order received
Sharing Printing Resources

- Print resources are shared between active programs
- Printouts are generated in pieces as the CPU gives each concurrent program some time

Problem
- The current program may generate a few print lines
- The CPU moves to the next program
- The second program may generate a few print lines, etc.

Result
- Printout is worthless as it contains a few lines from several programs
Sharing Printing Resources

Solution: Spooling

- Program writes a line to a disk file rather than sending directly to a printer
- When file is completed, placed in queue
- File printed when printer becomes available

- Allows program to complete execution much more quickly
 - Writing to disk much quicker than writing to printer
Utility Programs

- Are considered part of System Software
- Handle special needs
- Perform secondary chores
- Do not need to be memory resident
File Manager

- Stores files in a hierarchical directory structure
- Windows uses Windows Explorer
File Compression

- Reduces amount of space a file requires
 - Makes file take up less space on disk
 - Takes less time to transmit across communication lines
Other Utility Programs

- **Backup and Restore**
 - Backup: make copies of disks and store in a safe place
 - Restore: restore files from backups
- **Disk defragmenter**: reorganizes disk so all files are stored in contiguous locations
- **Device driver**: handles commands for devices, such as printers and storage devices