Microarray Analysis (a little) with R

Andy Pohl, Lowe Lab

Jan 22, 2003
Overview

1. Basic Analysis Strategy

2. R

4. Bioconductor stuff I don’t have time to cover, but I’ll briefly introduce.

5. A short demonstration of R and Bioconductor on some Lowe Lab data.

These slides are available from:
http://lowelab.ucsc.edu/andy/biocond-intro.pdf
• The main goal of analysis is to look for genes expressed similarly across a range of conditions in a *guilt by association* way.

• The big problems include the obligatory signal to noise issue of microarrays, and the problem of choosing a method of clustering, etc.

• The basic steps of analysis:
 1. Experiment (Raw data)
 2. Image Analysis (GenePix)
 3. Pre-normalization analysis
 – Background analysis and see how different types of spots e.g. controls compared to the rest.
 – Spatial intensity analysis (by sector).
 – Analyze pin and plate variations.
4. Normalization and filtering
 - Scale normalization
 - Intensity dependent location normalization (e.g. using controls).

5. Post-normalization stuff:
 - Clustering
 - Hypotheses testing
 - Classification

- Because there is so much data, it’s necessary to visualize the analysis with a bunch of plots.

- R is a good tool for making plots.
What is R?

- R was created in 1996 as an open-source alternative to the S-PLUS statistics program (commercial).

- Since then, many people around the world have contributed add-on packages for R to accomplish various statistical or visual tasks. Usually these contributors are professors or grad students promoting something they publish.

- R has a command-based interface (like a UNIX terminal prompt), but different packages sometimes include GUI widgets, usually to assist input.
Advantages of R

- It will definitely be popular for many many more years.
- It’s what the world’s top biostatisticians are using, so all the obvious advantages are there: reproducibility of analyses, common means of communicating methods, etc.
- Highly satisfying output.
- Many add-on packages like Bioconductor.
- No shortage of manuals, tutorials, etc.
- Available for Windows and Linux. It can also run on Apples with MacOS X (although not natively).
Disadvantages of R

- **NOT** easy to learn. For people who have some background with data structures and programming it's not so bad, but there is still a learning curve. I plan to deal with this problem by creating a web page detailing using Bioconductor from Jeff’s point of view.

- Some of the documentation can be confusing, seem incomplete, or expect a high level of expertise with statistics.
Bioconductor

- Bioconductor is a fairly new add-on package for R. It’s first release was in March, 2002.

- Headed by Robert Gentleman (Harvard), who is one of the two original creators of R, and still heads the development of that.

- It has routines for both Affymetrix and spotted arrays.

- It tries to handle all the steps of analysis after GenePix, but right now the step that has the most potential for expanding is the post-normalization stuff.
Bioconductor: Inputting data

Experiment

GenePix

.glob file
.glob file(s)
.experiments file

read.Galfile()
read.GenePix()
read.marrayInfo()

marrayRaw
Now that there is an \texttt{marrayRaw} object in R’s memory, there are two directions we can go:

1. Make plots.
2. Normalize.

I’ll start with making a few plots. There are three basic types of plots included in the \texttt{maPlots} portion of Bioconductor:

1. Image plot: shows things like background intensity across all sectors.
3. Boxplot: mainly for showing pin-intensity variation.
\[M = \log_2 \left(\frac{R}{G} \right) \]
\[A = \log_2 \left(\sqrt{RG} \right) = \frac{\log_2 R + \log_2 G}{2} \]

- These equations come up over and over. \(M \) is just the familiar log-ratio.
- The “experiments” file just contains information about the labels used in experiments (.gpr files).
Side example of M vs. A

We have two genes. The foreground intensity information follows:

1. Gene 1: Cy5 = 8, Cy3 = 64.
2. Gene 2: Cy5 = 256, Cy3 = 128.

Now the calculations go as follows:

\[
M_1 = \log_2 \left(\frac{8}{64} \right) = 3 - 6 = -3 \\
A_1 = \log_2 \sqrt{8 \times 64} = \frac{\log_2 8 + \log_2 64}{2} = \frac{3 + 6}{2} = 4.5 \\
M_2 = \log_2 \left(\frac{256}{128} \right) = 8 - 7 = 1 \\
A_2 = \log_2 \sqrt{256 \times 128} = \frac{\log_2 256 + \log_2 128}{2} = \frac{8 + 7}{2} = 7.5
\]
Side example of M vs. A

Typical log–intensity plot

Gene 1

Gene 2

Jan 22, 2003 Biology 210
Side example of M vs. A

M vs. A plot

Gene 1

Gene 2
Bioconductor: Example of maImage plot
Bioconductor: Normalization

• The types of normalization built-in fall into two different categories:

1. Location normalization using the local regression function \textit{loess} or using the median:
 – by sector
 – by plate
 – by row-column coordinate
 – by positive and negative control spots

2. Scale normalization: MAD scaling of log ratios.
Bioconductor: Scatter plot

M vs. A plot on array 61 (pre-norm)
Bioconductor: Scatter plot

M vs. A plot on array 61 (sector-sector-norm)
M vs. A plot on array 61 (2D-norm)
Bioconductor: Image plot of M
• An `exprSet` data structure is necessary for further analysis, so some manipulation needs to be done.
Bioconductor: After normalization

- Get a `exprSet` object by coercing the `marrayNorm` object.

- Filter the resulting set of genes into something suitable for analysis, using:
 - thresholds
 - filter out genes with NA values (any or all)
 - ANOVA
 - Cox regression, etc.

- Do analysis i.e. cluster, etc. (not covered today).
Hierarchical clustering on 15 genes

```
hclust (*, "average")
as.dist(1 − cc)
```

Jan 22, 2003 Biology 210
Thanks

- Lily Shiue
- Prof. Todd Lowe
- Prof. Sandrine Dudoit
- Jeff Savas