AMS 261: Probability Theory (Spring 2011)

Homework 3 (due Thursday May 12)

1. Let F and G be distribution functions on \mathbb{R} such that $G(t) \leq F(t)$, for all $t \in \mathbb{R}$ (in which case, G is said to be stochastically larger than F).
 • Construct two \mathbb{R}-valued random variables X and Y, defined on the same probability space (Ω, \mathcal{F}, P), such that the distribution function of X is G, the distribution function of Y is F, and $P(X \geq Y) = 1$.

2. Consider a simple random variable X defined on some probability space (Ω, \mathcal{F}, P), and let F be its distribution function. Denote by $F(x^-) = \lim_{y \to x^-} F(y)$ (or equivalently, $F(x^-) = \lim_{n \to \infty} F(x_n)$ for an arbitrary increasing sequence $\{x_n : n = 1, 2, \ldots\}$ converging to x).
 • Show that the expectation of X can be written in the form
 \[E(X) = \sum_{x \in \mathbb{R}} x\{F(x) - F(x^-)\}. \]

3. Let X be a simple random variable (taking both negative and positive values) defined on some probability space (Ω, \mathcal{F}, P).
 • Show that expectation definitions 1 (for simple random variables) and 3 (for general random variables taking values on the extended real line) are equivalent.

4. Consider an \mathbb{R}^+-valued random variable X, defined on some probability space (Ω, \mathcal{F}, P) such that $E(X) < \infty$. Let $A = \{\omega \in \Omega : X(\omega) = +\infty\}$ (recall that, based on the general definition for \mathbb{R}^+-valued measurable functions, we have that $A \in \mathcal{F}$).
 • Show that X is almost surely finite, that is, $P(A) = 0$.

5. Consider a sequence $\{X_n : n = 1, 2, \ldots\}$ of \mathbb{R}^+-valued random variables defined on the same probability space (Ω, \mathcal{F}, P). Assume that the sequence is (pointwise) increasing, that is, for all n and for each $\omega \in \Omega$, $X_n(\omega) \leq X_{n+1}(\omega)$. Denote by X the pointwise limit of $\{X_n : n = 1, 2, \ldots\}$, that is, for each $\omega \in \Omega$, $X(\omega) = \lim_{n \to \infty} X_n(\omega)$, and assume that $E(X) < \infty$. Define the variance for X by $\text{Var}(X) = E\{(X - E(X))^2\}$, and similarly, for each n, $\text{Var}(X_n) = E\{(X_n - E(X_n))^2\}$. (In general, the variance for a random variable Y with finite expectation $E(Y)$ is given by $\text{Var}(Y) = E\{(Y - E(Y))^2\}$, whether finite or infinite.)
 • Prove that $\text{Var}(X) = \lim_{n \to \infty} \text{Var}(X_n)$.

6. Let $\{X_n : n = 1, 2, \ldots\}$, $\{Y_n : n = 1, 2, \ldots\}$, and $\{Z_n : n = 1, 2, \ldots\}$ be sequences of \mathbb{R}-valued random variables (all the random variables are defined on the same probability space). Assume that: (a) $E(X_n)$ and $E(Z_n)$ exist for all n and are finite; (b) each of the three sequences converges almost surely (denote by X, Y, and Z the respective almost sure limits); (c) $E(X)$, $E(Y)$, and $E(Z)$ exist and are finite; (d) $X_n \leq Y_n \leq Z_n$ almost surely; (e) $\lim_{n \to \infty} E(X_n) = E(X)$, and $\lim_{n \to \infty} E(Z_n) = E(Z)$.
 • Show that $\lim_{n \to \infty} E(Y_n) = E(Y)$.