1. A countable sequence \(\{X_n : n = 1, 2, \ldots \} \) of \(\mathbb{R} \)-valued random variables, defined on a common probability space \((\Omega, \mathcal{F}, P)\), is said to converge completely if for any \(k = 1, 2, \ldots \),
\[\sum_{n=1}^{\infty} P(|X_n| > k^{-1}) < \infty. \]
- Show that if \(\{X_n : n = 1, 2, \ldots \} \) converges completely, then \(\lim_{n \to \infty} X_n = 0 \) almost surely.

2. Construct a countable sequence \(\{X_n : n = 1, 2, \ldots \} \) of \(\mathbb{R}^+ \)-valued random variables (i.e., \(X_n \geq 0 \), for all \(n \)) that satisfies \(\sum_{n=1}^{\infty} P(X_n > k^{-1}) < \infty \), for any \(k = 1, 2, \ldots \), but for which \(\lim_{n \to \infty} E(X_n) \neq 0 \).

3. For \(k = 1, 2, \ldots \), consider random variables \(X_k : (\Omega, \mathcal{F}, P) \to (\Psi_k, \mathcal{G}_k) \) and measurable functions \(\varphi_k : (\Psi_k, \mathcal{G}_k) \to (\Theta_k, \mathcal{H}_k) \). Assume that the countable sequence of random variables \(\{X_k : k = 1, 2, \ldots \} \) is independent.
- Prove that the sequence \(\{\varphi_k \circ X_k : k = 1, 2, \ldots \} \) is independent.

4. Let \(\{A_n : n = 1, 2, \ldots \} \) be a countable independent sequence of events on a probability space \((\Omega, \mathcal{F}, P)\).
- Prove that \(P(\bigcap_{n=1}^{\infty} A_n) = \prod_{n=1}^{\infty} P(A_n). \)
(\textbf{Note:} For a countable sequence of reals, \(\{b_n : n = 1, 2, \ldots \} \), the infinite product \(\prod_{n=1}^{\infty} b_n \) is defined by \(\lim_{n \to \infty} \prod_{k=1}^{n} b_k \), provided this limit exists.)

5. Consider two countable sequences of events, \(\{A_n : n = 1, 2, \ldots \} \) and \(\{B_n : n = 1, 2, \ldots \} \), on the same probability space \((\Omega, \mathcal{F}, P)\). Assume that, for each \(n \), \(A_n \) and \(B_n \) are independent. Moreover, assume that \(A = \lim_{n \to \infty} A_n \) and \(B = \lim_{n \to \infty} B_n \) exist.
- Show that \(A \) and \(B \) are independent.

6. Consider a countable sequence \(\{X_n : n = 1, 2, \ldots \} \) of \(\mathbb{R} \)-valued random variables, defined on a common probability space \((\Omega, \mathcal{F}, P)\), and an increasing function \(G : [0, \infty) \to [0, \infty) \), which satisfies \(\lim_{t \to \infty} \{t^{-1} G(t)\} = \infty \) and \(0 < \sup_n E\{G(|X_n|)\} < \infty \).
- Prove that \(\{X_n : n = 1, 2, \ldots \} \) is uniformly integrable.