1. Let \(\{A_n : n = 1, 2, \ldots\} \) be a countable sequence of subsets of a sample space \(\Omega \).
 (a) Assume that \(\{A_n : n = 1, 2, \ldots\} \) is an increasing sequence, that is, \(A_n \subseteq A_{n+1} \), for all \(n \geq 1 \).
 Show that \(\lim_{n \to \infty} A_n \) exists, and \(\lim_{n \to \infty} A_n = \bigcup_{n=1}^{\infty} A_n \).
 (b) Assume that \(\{A_n : n = 1, 2, \ldots\} \) is a decreasing sequence, that is, \(A_{n+1} \subseteq A_n \), for all \(n \geq 1 \).
 Show that \(\lim_{n \to \infty} A_n \) exists, and \(\lim_{n \to \infty} A_n = \bigcap_{n=1}^{\infty} A_n \).

2. Consider a measurable space \((\Omega, \mathcal{F})\) and a set function \(P : \mathcal{F} \to [0,1] \), which satisfies \(P(\Omega) = 1 \), and \(P(A \cup B) = P(A) + P(B) \) for any \(A \) and \(B \) in \(\mathcal{F} \) with \(A \cap B = \emptyset \). Moreover, assume that \(P \) is continuous, that is, \(P(\lim_{n \to \infty} A_n) = \lim_{n \to \infty} P(A_n) \), for any sequence \(\{A_n : n = 1, 2, \ldots\} \) of sets in \(\mathcal{F} \) for which \(\lim_{n \to \infty} A_n \) exists. Prove that \(P \) is a probability measure on \((\Omega, \mathcal{F})\).

3. Prove that any non-decreasing function from \(\mathbb{R} \) to \(\mathbb{R} \) is measurable. (Assume the usual Borel \(\sigma \)-field on \(\mathbb{R} \).)

4. Let \((\Omega_j, \mathcal{F}_j)\), \(j = 1, 2, 3 \), be measurable spaces. Consider measurable functions \(X : \Omega_1 \to \Omega_2 \) and \(Y : \Omega_2 \to \Omega_3 \), and define the composition function \(Y \circ X : \Omega_1 \to \Omega_3 \) by \(Y \circ X(\omega_1) = Y(X(\omega_1)) \), for any \(\omega_1 \in \Omega_1 \). Show that \(Y \circ X \) is a measurable function.

5. Let \(X \) and \(Y \) be \(\mathbb{R} \)-valued random variables defined on the same probability space \((\Omega, \mathcal{F}, P)\), and consider the subset of \(\Omega \) defined by \(A = \{\omega \in \Omega : X(\omega) \neq Y(\omega)\} \).
 (a) Prove that \(A \) is an event in \(\mathcal{F} \).
 (Hint: Recall the Archimedean Property of the real numbers, according to which, for any two real numbers \(a \) and \(b \) with \(a < b \), there exists a rational number \(q \) such that \(a < q < b \).)
 (b) Assume that \(P(A) = 0 \). Prove that \(P(X^{-1}(B)) = P(Y^{-1}(B)) \) for any Borel subset \(B \) of \(\mathbb{R} \)
 (in which case, we say that the distributions of \(X \) and \(Y \) are equal).