1. Let \(\{A_n : n = 1, 2, \ldots\} \) be a countable sequence of subsets of a sample space \(\Omega \).
 (a) Assume that \(\{A_n : n = 1, 2, \ldots\} \) is an increasing sequence, that is, \(A_n \subseteq A_{n+1} \), for all \(n \geq 1 \).
 Show that \(\lim_{n \to \infty} A_n \) exists, and \(\lim_{n \to \infty} A_n = \bigcup_{n=1}^{\infty} A_n \).
 (b) Assume that \(\{A_n : n = 1, 2, \ldots\} \) is a decreasing sequence, that is, \(A_{n+1} \subseteq A_n \), for all \(n \geq 1 \).
 Show that \(\lim_{n \to \infty} A_n \) exists, and \(\lim_{n \to \infty} A_n = \bigcap_{n=1}^{\infty} A_n \).

2. By definition, we will say that two events \(A \) and \(B \) in a probability space \((\Omega, \mathcal{F}, P) \) are equal almost surely (a.s.) if \(P(A \cap B^c) = 0 \) and \(P(B \cap A^c) = 0 \). Prove the following:
 (a) If \(A \) and \(B \) are equal a.s., then \(P(A) = P(B) \).
 (b) \(A \) and \(B \) are equal a.s. \textbf{if and only if} \(P(A \cap B) = \max\{P(A), P(B)\} \).

3. Consider a countable sequence \(\{A_n : n = 1, 2, \ldots\} \) of events in a probability space \((\Omega, \mathcal{F}, P) \).
 Prove the following inequalities:
 (a) \(\liminf_{n \to \infty} P(A_n) \geq P(\liminf_{n \to \infty} A_n) \)
 (b) \(P(\limsup_{n \to \infty} A_n) \geq \limsup_{n \to \infty} P(A_n) \)

 \textbf{Note}: Based on results for real sequences, we have \(\limsup_{n \to \infty} P(A_n) \geq \liminf_{n \to \infty} P(A_n) \), and therefore, in conjunction with the results in parts (a) and (b) above, we obtain
 \(P(\limsup_{n \to \infty} A_n) \geq \limsup_{n \to \infty} P(A_n) \geq \liminf_{n \to \infty} P(A_n) \geq P(\liminf_{n \to \infty} A_n) \).

4. Consider a measurable space \((\Omega, \mathcal{F}) \) and a set function \(P: \mathcal{F} \to [0,1] \) which satisfies \(P(\Omega) = 1 \) and \(P(A \cup B) = P(A) + P(B) \) for any \(A \) and \(B \) in \(\mathcal{F} \) with \(A \cap B = \emptyset \). Prove that \(P \) is countably additive (i.e., \(P \) is a probability measure on \((\Omega, \mathcal{F}) \)) \textbf{if and only if} \(P \) is continuous (i.e., \(P(\lim_{n \to \infty} A_n) = \lim_{n \to \infty} P(A_n) \), for any sequence \(\{A_n : n = 1, 2, \ldots\} \) of sets in \(\mathcal{F} \) for which \(\lim_{n \to \infty} A_n \) exists.)

5. Assuming the usual Borel \(\sigma \)-field on \(R \), prove that any non-decreasing function from \(R \) to \(R \) is measurable.

6. Let \(X \) be a random variable defined on a probability space \((\Omega, \mathcal{F}, P) \) and taking values on a measurable space \((\Psi, \mathcal{G}) \). Consider the collection \(\mathcal{A} \) of subsets of \(\Omega \) consisting of \(X^{-1}(B) \) for all \(B \in \mathcal{G} \). Because \(X \) is a random variable, we know that \(\mathcal{A} \subseteq \mathcal{F} \). Show that \(\mathcal{A} \) is a \(\sigma \)-field on \(\Omega \).
 \textbf{(Note):} \(\mathcal{A} \) is referred to as the \(\sigma \)-field generated by the random variable \(X \), and is denoted by \(\sigma(X) \). It is used in the formal definition of independence for random variables.

7. Let \(X \) and \(Y \) be \(R \)-valued random variables defined on the same probability space \((\Omega, \mathcal{F}, P) \), and consider the subset of \(\Omega \) defined by \(A = \{\omega \in \Omega : X(\omega) \neq Y(\omega)\} \).
 (a) Prove that \(A \) is an event in \(\mathcal{F} \).
 \textbf{(Hint):} Recall the \textit{Archimedean Property} for the set of real numbers, according to which, for any two real numbers \(a \) and \(b \) with \(a < b \), there exists a rational number \(q \) such that \(a < q < b \).
 (b) Assume that \(P(A) = 0 \). Prove that the distributions of \(X \) and \(Y \) are equal, that is, prove that \(P(X^{-1}(B)) = P(Y^{-1}(B)) \) for any Borel subset \(B \) of \(R \).