AMS 206/132, Winter 2014: Classical and Bayesian Inference

David Draper

Department of Applied Mathematics and Statistics
University of California, Santa Cruz

draper@ams.ucsc.edu
www.ams.ucsc.edu/~draper

CLASS WEB PAGE:
classes.soe.ucsc.edu/ams206/Winter14/

Lecture Notes, Part 6 (Bayesian Computation (continued))
The MCMC Dataset (continued)

- Iteration 0 would be the value(s) used to initialize the Markov chain;

- Iterations 1 through \(b \) would be the burn-in period, during which the chain reaches its equilibrium or stationary distribution (as mentioned above, iterations 0 through \(b \) are generally discarded); and

- Iterations \((b + 1) \) through \((b + m) \) would be the monitoring run, on which summaries of the posterior (means, SDs, density traces, ...) will be based.

In the second AMI mortality example the MCMC dataset might look like this:

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Phase</th>
<th>(\theta)</th>
<th>(I(\theta \leq 0.15))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Initialization</td>
<td>(\theta_0^* = 0.200)</td>
<td>—</td>
</tr>
<tr>
<td>1</td>
<td>Burn-in</td>
<td>(\theta_1^* = 0.244)</td>
<td>—</td>
</tr>
<tr>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td>(\vdots)</td>
</tr>
<tr>
<td>(b = 500)</td>
<td>Burn-in</td>
<td>(\theta_b^* = 0.098)</td>
<td>—</td>
</tr>
<tr>
<td>((b + 1) = 501)</td>
<td>Monitoring</td>
<td>(\theta_{b+1}^* = 0.275)</td>
<td>(I_{b+1}^* = 0)</td>
</tr>
<tr>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td>(\vdots)</td>
</tr>
<tr>
<td>((b + m) = 31,700)</td>
<td>Monitoring</td>
<td>(\theta_{b+m}^* = 0.120)</td>
<td>(I_{b+m}^* = 1)</td>
</tr>
</tbody>
</table>

Mean (Monitoring)	0.2177 (0.009)	0.0538 (0.004)
SD (Monitoring)	0.04615	—
Density Trace Only)	(like the bottom plot on p. 29, part 3a)	—

Think of iteration number \(i \) in the Monte Carlo sampling process as a discrete index of time \(t \), so that the columns of the MC and MCMC datasets can be viewed as time series.

An important concept from time series analysis is **autocorrelation**: the autocorrelation \(\rho_k \) of a stationary time series \(\theta_t^* \) at lag \(k \) (see, e.g., Chatfield (1996)) is \(\frac{\gamma_k}{\gamma_0} \), where \(\gamma_k \) is \(C(\theta^*_t, \theta^*_{t-k}) \), the covariance of the series with itself \(k \) iterations in the past—this measures the degree to which the time series at any given moment depends on its past history.
The MCMC Dataset (continued)

IID draws from $p(\theta|y)$ correspond to white noise: a time series with zero autocorrelations at all lags.

This is the behavior of the columns in the MC data set on p. 47 (part 3a), produced by ordinary rejection sampling.

Because of the Markov character of the columns of the MCMC data set on p. 2, each column, when considered as a time series, will typically have non-zero autocorrelations, and because Markov chains use their present values to decide where to go next it shouldn’t surprise you to hear that the typical behavior will be (substantial) positive autocorrelations—in other words, every time you get another draw from the Markov chain you get some new information about the posterior and a rehash of old information mixed in.

It’s a marvelous result from time series analysis (the Ergodic Theorem for Markov chains on p. 44 (part 3a) is an example of this fact) that all of the usual descriptive summaries of the posterior are still consistent as long as the columns of the MCMC data set form stationary time series.

In other words, provided that you can achieve the three goals back on p. 43 (part 3a) that Metropolis et al. set for themselves, and provided that you only do your monitoring after the Markov chain has reached equilibrium, the MCMC approach and the IID Monte Carlo approach are equally valid (they both get the right answers), but they may well differ on their efficiency (the rate per iteration, or per CPU second, at which they learn about the posterior may not be the same); and if, as is typically true, the columns of the MCMC dataset have positive autocorrelations, this will translate into slower learning (larger MCSEs) than with IID sampling (compare the MC and MCMC data sets).
3.4 The Metropolis Algorithm

Metropolis et al. were able to create what people would now call a **successful MCMC algorithm** by the following means (see the excellent book edited by Gilks et al. (1996) for many more details about the MCMC approach).

Consider the **rejection sampling method** (p. 28, part 3a) as a mechanism for generating realizations of a time series (where as above time indexes iteration number).

At any time t in this process you make a draw θ^* from the **proposal distribution** $g(\theta|y)$ (the normalized version of the envelope function G') and either accept a “move” to θ^* or reject it, according to the **acceptance probability** $\frac{p(\theta^*|y)}{G(\theta^*|y)}$; if accepted the process moves to θ^*, if not you **draw again** and discard the rejected draws until you do make a successful move.

As noted above, the stochastic process thus generated is an **IID (white noise)** series of draws from the **target distribution** $p(\theta|y)$.

Metropolis et al. had the following **beautifully simple idea** for how this may be generalized to situations where IID sampling is difficult: **they allowed the proposal distribution at time** t **to depend on the current value** θ_t **of the process**, and then—to get the right stationary distribution—if a proposed move is rejected, instead of discarding it **the process is forced to stay where it is for one iteration before trying again**.

The resulting process is a **Markov chain**, because (a) the draws are now dependent but (b) all you need to know in determining where to go next is **where you are now**.
Metropolis-Hastings

Letting θ_t stand for where you are now and θ^* for where you're thinking of going, in this approach there is enormous flexibility in the choice of the proposal distribution $g(\theta^*|\theta_t, y)$, even more so than in ordinary rejection sampling.

The original Metropolis et al. idea was to work with symmetric proposal distributions, in the sense that $g(\theta^*|\theta_t, y) = g(\theta_t|\theta^*, y)$, but Hastings (1970) pointed out that this could easily be generalized; the resulting method is the Metropolis-Hastings (MH) algorithm.

Building on the Metropolis et al. results, Hastings showed that you’ll get the correct stationary distribution $p(\theta|y)$ for your Markov chain by making the following choice for the acceptance probability:

$$
\alpha_{MH}(\theta^*|\theta_t, y) = \min \left\{ 1, \frac{p(\theta^*|y)}{g(\theta^*|\theta_t, y)} \frac{g(\theta_t|\theta^*, y)}{p(\theta_t|y)} \right\}.
$$

(1)

It turns out that the proposal distribution $g(\theta^*|\theta_t, y)$ can be virtually anything and you’ll get the right equilibrium distribution using the acceptance probability (1); see, e.g., Roberts (1996) and Tierney (1996) for the mild regularity conditions necessary to support this statement.

A summary of the method is on the next page.

It’s instructive to compare (p. 6) with (p. 28, part 3a) to see how heavily the MH algorithm borrows from ordinary rejection sampling, with the key difference that the proposal distribution is allowed to change over time.

Notice how (1) generalizes von Neumann’s acceptance probability ratio $\frac{p(\theta^*|y)}{G(\theta^*|y)}$ for ordinary rejection sampling: the crucial part of the new MH acceptance probability becomes the ratio of two von-Neumann-like ratios, one for where you are now and one for where you’re thinking of going (it’s equivalent to work with g or G since the normalizing constant cancels in the ratio).
Metropolis-Hastings (continued)

Algorithm (Metropolis-Hastings sampling). To construct a Markov chain whose equilibrium distribution is $p(\theta | y)$, choose a proposal distribution $g(\theta^* | \theta_t, y)$, define the acceptance probability $\alpha_{MH}(\theta^* | \theta_t, y)$ by (1), and

\[
\text{Initialize } \theta_0; t \leftarrow 0 \\
\text{Repeat } \{ \\
\text{Sample } \theta^* \sim g(\theta | \theta_t, y) \\
\text{Sample } u \sim \text{Uniform}(0, 1) \\
\text{If } u \leq \alpha_{MH}(\theta^* | \theta_t, y) \text{ then } \theta_{t+1} \leftarrow \theta^* \\
\text{else } \theta_{t+1} \leftarrow \theta_t \\
\} \\
t \leftarrow (t + 1)
\]

When the proposal distribution is symmetric in the Metropolis et al. sense, the acceptance probability ratio reduces to $\frac{p(\theta^* | y)}{p(\theta_t | y)}$, which is easy to motivate intuitively: whatever the target density is at the current point θ_t, you want to visit points of higher density more often and points of lower density less often, and it turns out that (1) does this for you in the natural and appropriate way.

As an example of the MH algorithm in action, consider a Gaussian model with known mean μ and unknown variance σ^2 applied to the NB10 data back in part 3a.

The likelihood function for σ^2, derived from the sampling model $(Y_i | \sigma^2) \overset{\text{IID}}{\sim} N(\mu, \sigma^2)$ for $i = 1, \ldots, n$, is

\[
l(\sigma^2 | y) = c \prod_{i=1}^{n} (\sigma^2)^{-\frac{1}{2}} \exp \left[-\frac{(y_i - \mu)^2}{2\sigma^2} \right] \\
= c (\sigma^2)^{-\frac{n}{2}} \exp \left[-\frac{\sum_{i=1}^{n} (y_i - \mu)^2}{2\sigma^2} \right].
\]
MH Sampling (continued)

This is recognizable as a member of the Scaled Inverse χ^2 family $\chi^{-2}(\nu, s^2)$ (e.g., Gelman, Carlin, et al. (2003)) of distributions, which is a rescaled version of the Inverse Gamma family chosen so that s^2 is an estimate of σ^2 based upon ν “observations.”

You can now convince yourself that if the prior for σ^2 in this model is taken to be $\chi^{-2}(\nu, s^2)$, then the posterior for σ^2 will also be Scaled Inverse χ^2: with this choice of prior

$$p(\sigma^2|y) = \chi^{-2}\left[\nu + n, \frac{\nu s^2 + \sum_{i=1}^{n}(y_i - \mu)^2}{\nu + n}\right]. \quad (4)$$

This makes good intuitive sense: the prior estimate s^2 of σ^2 receives ν votes and the sample estimate $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n}(y_i - \mu)^2$ receives n votes in the posterior weighted average estimate $\frac{\nu s^2 + n \hat{\sigma}^2}{\nu + n}$.

Equation (4) provides a satisfying closed-form solution to the Bayesian updating problem in this model (e.g., it’s easy to compute posterior moments analytically, and you can use numerical integration or well-known approximations to the CDF of the Gamma distribution to compute percentiles).

For illustration purposes suppose instead that you want to use MH sampling to summarize this posterior.

Then your main choice as a user of the algorithm is the specification of the proposal distribution (PD) $g(\sigma^2|\sigma_t^2, y)$.

The goal in choosing the PD is getting a chain that mixes well (moves freely and fluidly among all of the possible values of $\theta = \sigma^2$), and nobody has (yet) come up with a sure-fire strategy for always succeeding at this task.

Having said that, here are two basic ideas that often tend to promote good mixing:
MH Sampling (continued)

(1) Pick a PD that looks like a somewhat overdispersed version of the posterior you’re trying to sample from (e.g., Tierney (1996)).

Some work is naturally required to overcome the circularity inherent in this choice (if I fully knew $p(\theta|y)$ and all of its properties, why would I be using this algorithm in the first place?).

(2) Set up the PD so that the expected value of where you’re going to move to (θ^*), given that you accept a move away from where you are now (θ_t), is to stay where you are now: $E_g(\theta^*|\theta_t, y) = \theta_t$.

That way, when you do make a move, there will be an approximate left-right balance, so to speak, in the direction you move away from θ_t, which will encourage rapid exploration of the whole space.

Using idea (1), a decent choice for the PD in the Gaussian model with unknown variance might well be the Scaled Inverse χ^2 distribution: $g(\sigma^2|\sigma_t^2, y) = \chi^{-2}(\nu_*, \sigma_*^2)$.

This distribution has mean $\frac{\nu_*}{\nu_* - 2} \sigma_*^2$ for $\nu_* > 2$.

To use idea (2), then, I can choose any ν_* greater than 2 that I want, and as long as I take $\sigma_*^2 = \frac{\nu_* - 2}{\nu_*} \sigma_t^2$ that will center the PD at σ_t^2 as desired.

So I’ll use

$$g(\sigma^2|\sigma_t^2, y) = \chi^{-2} \left(\nu_*, \frac{\nu_* - 2}{\nu_*} \sigma_t^2 \right).$$

(5)

This leaves ν_* as a kind of potential tuning constant—the hope is that I can vary ν_* to improve the mixing of the chain.
The above figure (motivated by an analogous plot in Gilks et al. (1996)) presents *time series traces* of some *typical output* of the MH sampler with $\nu_\star = (2.5, 20, 500)$.

The *acceptance probabilities* with these values of ν_\star are $(0.07, 0.44, 0.86)$, respectively.

The *SD* of the $\chi^2\left(\nu_\star, \frac{\nu_\star - 2}{\nu_\star} \sigma_t^2\right)$ distribution is proportional to $\frac{\nu^2}{(\nu^2 - 2)^2 \sqrt{\nu - 4}}$, which decreases as ν_\star increases, and this turns out to be *crucial*: when the proposal distribution SD is too large (small ν_\star, as in the top panel in the figure), the algorithm tries to make *big jumps* around θ space (good), but almost all of them get *rejected* (bad), so there are long periods of no movement at all, whereas when the PD SD is too small (large ν_\star; see the bottom panel of the figure), the algorithm *accepts* most of its proposed moves (good), but they’re so tiny that it takes a *long time to fully explore the space* (bad).
MH Sampling (continued)

Gelman, Roberts, et al. (1995) have shown that in simple canonical problems with approximately normal target distributions the optimal acceptance rate for MH samplers like the one illustrated here is about 44% when the vector of unknowns is one-dimensional, and this can serve as a rough guide: you can modify the proposal distribution SD until the acceptance rate is around the Gelman et al. target figure.

The central panel of the figure displays the best possible MH behavior in this problem in the family of PDs chosen.

Even with this optimization you can see that the mixing is not wonderful, but contemporary computing speeds enable huge numbers of draws to be collected in a short period of time, compensating for the comparatively slow rate at which the MH algorithm learns about the posterior distribution of interest.

In this example the unknown quantity $\theta = \sigma^2$ was real-valued, but there’s nothing in the MH method that requires this; in principle it works equally well when θ is a vector of any finite dimension (look back at the algorithm in (2) to verify this).

Notice, crucially, that to implement this algorithm you only need to know how to calculate $p(\theta|y)$ up to a constant multiple, since any such constant will cancel in computing the acceptance probability (1)—thus you’re free to work with unnormalized versions of $p(\theta|y)$, which is a great advantage in practice.
MH Sampling (continued)

There’s even more flexibility in this algorithm than might first appear: it’s often possible to identify a set A of auxiliary variables—typically these are latent (unobserved) quantities—to be sampled along with the parameters, which have the property that they improve the mixing of the MCMC output (even though extra time is spent in sampling them).

When the set (θ, A) of quantities to be sampled is a vector of length k, there’s additional flexibility: you can block update all of (θ, A) at once, or with appropriate modifications of the acceptance probability you can divide (θ, A) up into components, say $(\theta, A) = (\lambda_1, \ldots, \lambda_l)$, and update the components one at a time (as Metropolis et al. originally proposed in 1953).

The idea in this component-by-component version of the algorithm, which Gilks et al. (1996) call single-component MH sampling, is to have k different proposal distributions, one for each component of θ.

Each iteration of the algorithm (indexed as usual by t) has k steps, indexed by i; at the beginning of iteration t you scan along, updating λ_1 first, then λ_2, and so on until you’ve updated λ_k, which concludes iteration t.

Let $\lambda_{t,i}$ stand for the current state of component i at the end of iteration t, and let λ_{-i} stand for the (θ, A) vector with component i omitted (the notation gets awkward here; it can’t be helped).

The proposal distribution $g_i(\lambda_i^*|\lambda_{t,i}, \lambda_{t,-i}, y)$ for component i is allowed to depend on the most recent versions of all components of (θ, A); here $\lambda_{t,-i}$ is the current state of λ_{-i} after step $(i-1)$ of iteration t is finished, so that components 1 through $(i-1)$ have been updated but not the rest.
3.5 Gibbs Sampling

The acceptance probability for the proposed move to λ_i^* that creates the correct equilibrium distribution turns out to be

$$\alpha_{MH}(\lambda_i^*|\lambda_{t,-i}, \lambda_{t,i}, y) = \min\left[1, \frac{p(\lambda_i^*|\lambda_{t,-i}, y) g_i(\lambda_{t,i}|\lambda_i^*, \lambda_{t,-i}, y)}{p(\lambda_{t,i}|\lambda_{t,-i}, y) g_i(\lambda_i^*|\lambda_{t,i}, \lambda_{t,-i}, y)}\right].$$

(6)

The distribution $p(\lambda_i|\lambda_{-i}, y)$ appearing in (6), which is called the full conditional distribution for λ_i, has a natural interpretation: it represents the posterior distribution for the relevant portion of (θ, A) given y and the rest of (θ, A).

The full conditional distributions act like building blocks in constructing the complete posterior distribution $p(\theta|y)$, in the sense that any multivariate distribution is uniquely determined by its set of full conditionals (Besag (1974)).

An important special case of single-component MH sampling arises when the proposal distribution $g_i(\lambda_i^*|\lambda_{t,i}, \lambda_{t,-i}, y)$ for component i is chosen to be the full conditional $p(\lambda_i^*|\lambda_{t,-i}, y)$ for λ_i: you can see from (6) that when this choice is made a glorious cancellation occurs and the acceptance probability is 1.

This is Gibbs sampling, independently (re)discovered by Geman and Geman (1984): the Gibbs recipe is to sample from the full conditionals and accept all proposed moves.

Even though it’s just a version of MH, Gibbs sampling is important enough to merit a summary of its own.

Single-element Gibbs sampling, in which each real-valued coordinate $(\theta_1, \ldots, \theta_k)$ gets updated in turn, is probably the most frequent way Gibbs sampling gets used, so that’s what I’ll summarize ((7) details Gibbs sampling in the case with no auxiliary variables A, but the algorithm works equally well when θ is replaced by (θ, A) in the summary).
Gibbs Sampling (continued)

Algorithm (Single-element Gibbs sampling). To construct a Markov chain whose equilibrium distribution is \(p(\theta|y) \) with \(\theta = (\theta_1, \ldots, \theta_k) \),

\[
\text{Initialize } \theta_{0,1}^*, \ldots, \theta_{0,k}^*; \quad t \leftarrow 0 \\
\text{Repeat } \{
\text{Sample } \theta_{t+1,1}^* \sim p(\theta_1|y, \theta_{t,2}^*, \theta_{t,3}^*, \theta_{t,4}^*, \ldots, \theta_{t,k}^*) \\
\text{Sample } \theta_{t+1,2}^* \sim p(\theta_2|y, \theta_{t+1,1}^*, \theta_{t,3}^*, \theta_{t,4}^*, \ldots, \theta_{t,k}^*) \\
\text{Sample } \theta_{t+1,3}^* \sim p(\theta_3|y, \theta_{t+1,1}^*, \theta_{t+1,2}^*, \theta_{t,4}^*, \ldots, \theta_{t,k}^*) \\
\vdots \quad \vdots \quad \vdots \quad \vdots \\
\text{Sample } \theta_{t+1,k}^* \sim p(\theta_k|y, \theta_{t+1,1}^*, \theta_{t+1,2}^*, \theta_{t+1,3}^*, \ldots, \theta_{t+1,k-1}^*) \\
t \leftarrow (t + 1)
\}\]

(7)

Example: the NB10 Data. Recall that this data set was symmetric but heavy-tailed, suggesting a model with a \(t \) likelihood:

\[
(\mu, \sigma^2, \nu) \sim p(\mu, \sigma^2, \nu) \\
(y_i|\mu, \sigma^2, \nu) \overset{\text{IID}}{\sim} t_\nu(\mu, \sigma^2),
\]

where \(t_\nu(\mu, \sigma^2) \) denotes the scaled \(t \)-distribution with mean \(\mu \), scale parameter \(\sigma^2 \), and shape parameter \(\nu \).

This distribution has variance \(\sigma^2 \left(\frac{\nu}{\nu - 2} \right) \) for \(\nu > 2 \) (so that shape and scale are mixed up, or confounded, in \(t_\nu(\mu, \sigma^2) \)) and may be thought of as the distribution of the quantity \(\mu + \sigma e \), where \(e \) is a draw from the standard \(t \) distribution that is tabled at the back of all introductory statistics books.

However, a better way to think about model (8) is as follows.
Model Expansion

It’s a fact from basic distribution theory, probably of more interest to Bayesians than frequentists, that the \(t \) distribution is an \textbf{Inverse Gamma mixture of Gaussians}.

This just means that to generate a \(t \) random quantity you can first draw from an Inverse Gamma distribution and then draw from a Gaussian \textbf{conditional} on what you got from the Inverse Gamma.

\[(\lambda \sim \Gamma^{-1}(\alpha, \beta)) \text{ just means that } \lambda^{-1} = \frac{1}{\lambda} \sim \Gamma(\alpha, \beta).\]

In more detail, \((y|\mu, \sigma^2, \nu) \sim t_\nu(\mu, \sigma^2)\) is the same as the \textbf{hierarchical model}

\[
\begin{align*}
(\lambda|\nu) & \sim \Gamma^{-1}\left(\frac{\nu}{2}, \frac{\nu}{2}\right) \\
(y|\mu, \sigma^2, \lambda) & \sim N(\mu, \lambda \sigma^2).
\end{align*}
\]

Putting (9) together with the \textbf{conjugate prior} for \(\mu \) and \(\sigma^2 \) in a Gaussian (not \(t \)) model for the data gives the following HM for the NB10 data:

\[
\begin{align*}
\nu & \sim p(\nu) \\
\sigma^2 & \sim \text{SI-}\chi^2(\nu_0, \sigma_0^2) \\
(\mu|\sigma^2) & \sim N\left(\mu_0, \frac{\sigma^2}{\kappa_0}\right) \\
(\lambda_i|\nu) & \overset{\text{IID}}{\sim} \Gamma^{-1}\left(\frac{\nu}{2}, \frac{\nu}{2}\right) \\
(y_i|\mu, \sigma^2, \lambda_i) & \overset{\text{indep}}{\sim} N(\mu, \lambda_i \sigma^2).
\end{align*}
\]

You could try using a \textbf{Gaussian} likelihood (instead of \(t \)) with this data set, and you’d find that this model is \textbf{inadequate} because it doesn’t \textbf{predict} the data in the \textbf{tails} well.

Remembering also from introductory statistics that the Gaussian distribution is the \textbf{limit} of the \(t \) family as \(\nu \to \infty \), you can see that the idea in (10) is to \textbf{expand} the Gaussian model by embedding it in the richer \(t \) family, of which it’s a special case with \(\nu = \infty \).
Implementing Gibbs

Model expansion is often the best way to deal with uncertainty in the modeling process: when you find deficiencies of the current model, embed it in a richer class, with the model expansion in directions suggested by the deficiencies (we'll also see this method in action again later).

The MCMC Dataset. Imagine trying to do Gibbs sampling on model (10), with the parameter vector $	heta = (\mu, \sigma^2, \nu)$. Carrying out the iterative program described in (7) above would produce the following MCMC Dataset:

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Phase</th>
<th>μ</th>
<th>σ^2</th>
<th>ν</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Initializing</td>
<td>μ_0</td>
<td>σ_0^2</td>
<td>ν_0</td>
</tr>
<tr>
<td>1</td>
<td>Burn-In</td>
<td>$\mu_1(y, \sigma_0^2, \nu_0)$</td>
<td>$\sigma_1^2(y, \mu_1, \nu_0)$</td>
<td>$\nu_1(y, \mu_1, \sigma_1^2)$</td>
</tr>
<tr>
<td>2</td>
<td>Burn-In</td>
<td>$\mu_2(y, \sigma_1^2, \nu_1)$</td>
<td>$\sigma_2^2(y, \mu_2, \nu_1)$</td>
<td>$\nu_1(y, \mu_2, \sigma_2^2)$</td>
</tr>
<tr>
<td>\cdot</td>
<td>\cdot</td>
<td>\cdot</td>
<td>\cdot</td>
<td>\cdot</td>
</tr>
<tr>
<td>b</td>
<td>Burn-In</td>
<td>μ_b</td>
<td>σ_b^2</td>
<td>ν_b</td>
</tr>
<tr>
<td>$(b+1)$</td>
<td>Monitoring</td>
<td>μ_{b+1}</td>
<td>σ_{b+1}^2</td>
<td>ν_{b+1}</td>
</tr>
<tr>
<td>$(b+2)$</td>
<td>Monitoring</td>
<td>μ_{b+2}</td>
<td>σ_{b+2}^2</td>
<td>ν_{b+2}</td>
</tr>
<tr>
<td>\cdot</td>
<td>\cdot</td>
<td>\cdot</td>
<td>\cdot</td>
<td>\cdot</td>
</tr>
<tr>
<td>$(b+m)$</td>
<td>Monitoring</td>
<td>μ_{b+m}</td>
<td>σ_{b+m}^2</td>
<td>ν_{b+m}</td>
</tr>
</tbody>
</table>

Looking at iterations 1 and 2 you can see that, in addition to y, the sampler makes use only of parameter values in the current row and the previous row (this illustrates the Markov character of the samples).

As we've seen above, at the end of the $(b+m)$ iterations, if you want (say) the marginal posterior for μ, $p(\mu|y)$, all you have to do is take the m values $\mu_{b+1}, \ldots, \mu_{b+m}$ and summarize them in any ways that interest you: their sample mean is your simulation estimate of the posterior mean of μ, their sample histogram (or, better, their kernel density trace) is your simulation estimate of $p(\mu|y)$, and so on.
Practical Issues

Implementation Details. (1) How do you figure out the full conditionals, and how do you sample from them?

(2) What should you use for initial values?

(3) How large should b and m be?

(4) More generally, how do you know when the chain has reached equilibrium?

Questions (3–4) fall under the heading of **MCMC diagnostics**, which I’ll cover a bit later, and I’ll address question (2) in the **case studies** below.

Computing the full conditionals. For a simple example of working out the full conditional distributions, consider the **conjugate Gaussian model** I mentioned earlier:

\[
\begin{align*}
\sigma^2 & \sim \text{SI-}χ^2(\nu_0, \sigma_0^2) \\
(\mu|\sigma^2) & \sim N\left(\mu_0, \frac{\sigma^2}{\kappa_0}\right) \\
(Y_i|\mu, \sigma^2) & \overset{\text{IID}}{\sim} N(\mu, \sigma^2).
\end{align*}
\] (11)

The full conditional distribution for \(\mu\) in this model is \(p(\mu|\sigma^2, y)\), considered as a function of \(\mu\) for fixed \(\sigma^2\) and \(y\)—but this is just

\[
p(\mu|\sigma^2, y) = \frac{p(\mu, \sigma^2, y)}{p(\sigma^2, y)}
= c \cdot p(\mu, \sigma^2, y)
= c \cdot p(\sigma^2) \cdot p(\mu|\sigma^2) \cdot p(y|\mu, \sigma^2)
= c \exp\left[-\frac{\kappa_0}{2\sigma^2} (\mu - \mu_0)^2\right] \prod_{i=1}^{n} \exp\left[-\frac{1}{2\sigma^2} (y_i - \mu)^2\right].
\] (12)
Full Conditionals

From this

\[p(\mu | \sigma^2, y) = c \exp\left[-\frac{\kappa_0}{2\sigma^2}(\mu - \mu_0)^2 \right] \exp\left[-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - \mu)^2 \right]. \]

Expanding out the squares, collecting powers of \(\mu \), and completing the square in \(\mu \) gives

\[p(\mu | \sigma^2, y) = c \exp\left[-\frac{\kappa_0 + n}{2\sigma^2} \left(\mu - \frac{\kappa_0 \mu_0 + n\bar{y}}{\kappa_0 + n} \right)^2 \right], \quad (13) \]

from which it’s clear that the full conditional for \(\mu \) in model (11) is

\[(\mu | \sigma^2, y) \sim N\left(\frac{\kappa_0 \mu_0 + n\bar{y}}{\kappa_0 + n}, \frac{\sigma^2}{\kappa_0 + n} \right). \quad (14) \]

Similarly, the full conditional for \(\sigma^2 \) in this model, \(p(\sigma^2 | \mu, y) \), considered as a function of \(\sigma^2 \) for fixed \(\mu \) and \(y \), is just

\[p(\sigma^2 | \mu, y) = \frac{p(\sigma^2, \mu, y)}{p(\mu, y)} \]

\[= c p(\sigma^2, \mu, y) \]

\[= c p(\sigma^2) p(\mu | \sigma^2) p(y | \mu, \sigma^2) \]

\[= c (\sigma^2)^{-\left(1 + \frac{1}{2}\nu_0\right)} \exp\left(-\frac{\nu_0 \sigma_0^2}{2\sigma^2} \right) \cdot\]

\[(\sigma^2)^{-\frac{1}{2}} \exp\left[-\frac{\kappa_0}{2\sigma^2}(\mu - \mu_0)^2 \right] \cdot\]

\[(\sigma^2)^{-\frac{n}{2}} \exp\left[-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - \mu)^2 \right]. \]

When this is simplified you get
Full Conditionals (continued)

\[p(\sigma^2|\mu, y) = c(\sigma^2)^{-\left(1+\frac{\nu_0+1+n}{2}\right)} \exp \left[-\frac{\nu_0 \sigma_0^2 + \kappa_0 (\mu - \mu_0)^2 + n s^2_\mu}{2\sigma^2} \right], \]

where \(s^2_\mu = \frac{1}{n} \sum_{i=1}^{n} (y_i - \mu)^2 \).

From the form of this distribution it becomes clear that

\[(\sigma^2|\mu, y) \sim \text{SI-}\chi^2\left(\nu_0 + 1 + n, \frac{\nu_0 \sigma_0^2 + \kappa_0 (\mu - \mu_0)^2 + n s^2_\mu}{\nu_0 + 1 + n} \right). \] (16)

Thus in conjugate situations the full conditional distributions have conjugate forms, which are tedious but straightforward to compute.

Both the directness and the tedium of this calculation suggest that it should be possible to write a computer program to work out the full conditionals for you, and indeed at least two such programs now exist:

- **WinBUGS**, a fairly general-purpose MCMC program produced by David Spiegelhalter and others at the MRC Biostatistics Unit in Cambridge, UK (Spiegelhalter et al., 1997), and

- **MLwiN**, a program that does both maximum-likelihood and Bayesian calculations in hierarchical (multilevel) models (Rasbash et al. 2000).

WinBUGS is available for free downloading at

www.mrc-bsu.cam.ac.uk/;

MLwiN has a nominal charge and can be downloaded from the web page of the Multilevel Models Project,

www.cmm.bristol.ac.uk/MLwiN/.
Why the Metropolis Algorithm Works

Here's a sketch of the crucial part of the proof, based on an argument in Gamerman (1997), of the validity of the Metropolis algorithm, in the case of a discrete (finite or countably infinite) state space \(S \) (see chapter 1 in Gilks et al. 1996 for a proof sketch when \(S \) is continuous).

I see now that my Markov chain notation up until this point has not been consistent enough to keep the proof from becoming confusing, so let’s start over again with the following notation.

A stochastic process \(\{\theta^*_t, t \in T\}, T = \{0, 1, \ldots\} \) on a discrete state space \(S \) is a Markov chain iff

\[
P(\theta^*_{t+1} = y | \theta^*_t = x, \theta^*_{t-1} = x_{n-1}, \ldots, \theta^*_0 = x_0) = P(\theta^*_{t+1} = y | \theta^*_t = x)
\]

for all \(x_0, \ldots, x_{t-1}, x, y \in S \).

In general \(P(\theta^*_{t+1} = y | \theta^*_t = x) \) depends on \(x, y, \) and \(t \), but if the probability of transitioning from \(x \) to \(y \) at time \(t \) is constant in \(t \) things will clearly be simpler; such chains are called homogeneous (confusingly, some sources call them stationary, but that terminology seems well worth avoiding).

The random walk described earlier is obviously a homogeneous Markov chain, and so are any Markov chains generated by the MH algorithm; I’ll assume homogeneity in what follows.

Under homogeneity it makes sense to talk about the transition probability

\[
P(x, y) = P(\theta^*_{t+1} = y | \theta^*_t = x)
\]

for all \(t \),

which satisfies

\[
P(x, y) \geq 0 \text{ for all } x, y \in S \quad \text{and} \quad \sum_{y \in S} P(x, y) = 1 \text{ for all } x \in S.
\]
Metropolis Proof Sketch

When S is discrete a **transition matrix** P can be defined with element (i,j) given by $P(x_i,x_j)$, where x_i is the ith element in S according to whatever **numbering convention** you want to use (the second part of (19) implies that the row sums of such a matrix are always 1; this is the defining condition for a **stochastic matrix**).

Suppose the chain is **initialized** at time 0 by making a **draw** from a probability distribution $\pi_0(x) = P(\theta_0^* = x)$ on S (**deterministically** starting it at some point x_0 is a special case of this); then the probability distribution $\pi_1(y)$ for where it will be at time 1 is

$$\pi_1(y) = P(\theta_1^* = y) = \sum_{x \in S} P(\theta_0^* = x, \theta_1^* = y)$$

$$= \sum_{x \in S} P(\theta_0^* = x) P(\theta_1^* = y|\theta_0^* = x) \quad (20)$$

$$= \sum_{x \in S} \pi_0(x) P(x,y),$$

which can be written in **vector and matrix** notation as

$$\pi_1 = \pi_0 P, \quad (21)$$

where π_0 and π_1 are regarded as **row vectors**.

Then by the **same reasoning**

$$\pi_2 = \pi_1 P = (\pi_0 P)P = \pi_0 P^2, \quad (22)$$

and **in general**

$$\pi_t = \pi_0 P^t. \quad (23)$$

For **simple** Markov chains this can be used to work out the **long-run** behavior of the chain as $t \to \infty$, but this becomes **algebraically prohibitive** as the **transition behavior** of the chain increases in **complexity**.
Proof Sketch (continued)

In any case for ergodic Markov chains the limiting behavior $\pi(y)$ is independent of π_0 and turns out to be characterized by the relation

$$\pi(y) = \sum_{x \in S} \pi(x) P(x, y), \quad \text{or} \quad \pi = \pi P, \quad (24)$$

which defines the stationary distribution π of the chain.

As we've seen above, the hard bit in verifying the validity of the Metropolis algorithm is demonstrating that the Markov chain created by running the algorithm has the correct stationary distribution, namely the target posterior $p(\theta|y)$; one way to do this is the following.

It's possible to imagine running any homogeneous Markov chain $\{\theta^*_t, t = 0, 1, \ldots\}$ with transition probabilities $P(x, y)$ backwards in time.

This new reverse-time stochastic process can be shown also to be a Markov chain, although it may not be homogeneous.

If it is homogeneous, and if in addition the reverse-time process has the same transition probabilities as the original process, the Markov chain is said to be reversible; all such chains satisfy the detailed balance equation

$$\pi(x) P(x, y) = \pi(y) P(y, x) \text{ for all } x, y \in S. \quad (25)$$

It turns out that if there’s a distribution π satisfying (25) for an irreducible Markov chain, then the chain is positive recurrent (and therefore ergodic) and reversible, and its stationary distribution is π (sum (25) over y to get (24)).
Proof Sketch (continued)

In other words, if you’re trying to create an ergodic Markov chain and you want it to have some target stationary distribution \(\pi \), one way to achieve this goal is to ensure that the chain is irreducible and that its transition probabilities \(P(x, y) \) satisfy detailed balance with respect to the target \(\pi \).

Any reasonable proposal distribution in the Metropolis algorithm will yield an irreducible Markov chain, so the interesting bit is to verify detailed balance; the argument proceeds as follows.

Consider a given target distribution \(p_x \) on \(S \); we’re trying to construct a Markov chain with stationary distribution \(\pi \) such that \(\pi(x) = p_x \) for all \(x \in S \).

The Metropolis algorithm—(2), with the special case of the acceptance probabilities (1) reducing to the simpler form \(\min \left[1, \frac{p(y|x)}{p(x|y)} \right] \) by the assumption of a symmetric proposal distribution—actually involves two related Markov chains: the (less interesting) chain that you could create by accepting all proposed moves, and the (more interesting) chain created by the actual algorithm.

Let \(Q(x, y) \) be any irreducible transition matrix on \(S \) such that \(Q(x, y) = Q(y, x) \) for all \(x, y \in S \); this is the transition matrix for the (less interesting) chain induced by the proposal distribution.

Define the (more interesting) chain \(\{\theta^*_t, t = 0, 1, \ldots\} \) (the actual Metropolis chain) as having transitions from \(x \) to \(y \) proposed according to \(Q(x, y) \), except that the proposed value for \(\theta^*_{t+1} \) is accepted with probability \(\min \left(1, \frac{p_y}{p_x} \right) \) and rejected otherwise, leaving the chain in state \(x \).
Proof Sketch (continued)

The transition probabilities $P(x, y)$ for the Metropolis chain are as follows: for $y \neq x$, and denoting by A_{xy} the event that the proposed move from x to y is accepted,

\[
P(x, y) = P(\theta_{t+1}^{*} = y | \theta_{t}^{*} = x) \\
= P(\theta_{t+1}^{*} = y, A_{xy} | \theta_{t}^{*} = x) + P(\theta_{t+1}^{*} = y, \text{not } A_{xy} | \theta_{t}^{*} = x) \\
= P(\theta_{t+1}^{*} = y | A_{xy}, \theta_{t}^{*} = x) P(A_{xy} | \theta_{t}^{*} = x) \\
= Q(x, y) \min\left(1, \frac{p_y}{p_x}\right).
\]

A similar calculation shows that for $y = x$

\[
P(x, x) = Q(x, x) + \sum_{y \neq x} Q(x, y) \left[1 - \min\left(1, \frac{p_y}{p_x}\right)\right], \quad (27)
\]

but this is not needed to show detailed balance because (25) is trivially satisfied when $y = x$.

When $y \neq x$ there are two cases: $p_y \geq p_x > 0$ (I'll give details in this case) and $0 < p_y < p_x$ (the other case follows analogously).

If $p_y \geq p_x$, note that $\min\left(1, \frac{p_y}{p_x}\right) = 1$ and

\[
\min\left(1, \frac{p_x}{p_y}\right) p_y = \min\left(p_y, \frac{p_x}{p_y} p_y\right) = \min(p_y, p_x) = p_x; \quad \text{then}
\]

\[
p_x P(x, y) = p_x Q(x, y) \min\left(1, \frac{p_y}{p_x}\right) = p_x Q(x, y) \\
= p_x Q(y, x) = Q(y, x) \min\left(1, \frac{p_x}{p_y}\right) p_y \quad (28)
\]

and the proof of detailed balance, and with it the validity of the Metropolis algorithm, is complete.
Directed Acyclic Graphs

WinBUGS achieves its generality by means of two ideas:

(1) Viewing Bayesian models as directed (acyclic) graphs (DAGs).

The conditional independence nature of Bayesian hierarchical models—in which quantities in the model depend on things one layer higher in the hierarchy but no higher (e.g., in the NB10 t model (10) the y_i depend on $(\mu, \sigma^2, \lambda_i)$ but not on ν)—lends itself to thinking of all quantities in such models as nodes in a directed graph.

A DAG can be thought of as a picture in which known and unknown quantities are represented either by squares (for knowns) or circles (for unknowns), connected by arrows (from the parents to the children) that indicate the direction of the stochastic dependence.

The acyclic assumption means that by following the directions of the arrows it’s impossible to return to a node once you’ve left it, and stacked sheets indicate repetition (e.g., across conditionally IID data values).

Here’s a DAG for the NB10 model based on the t distribution.
Adaptive Rejection Sampling

(2) Employing adaptive-rejection sampling (Gilks and Wild, 1992) to generate the random draws from the full conditional distributions, when they don’t have simple recognizable forms.

As we’ve seen, rejection sampling is a general method for sampling from a given density \(p(\theta|y) \), which requires an envelope function \(G \) which dominates \(p \) (chosen so that \(G(\theta|y) \geq p(\theta|y) \) for all \(\theta \)).

A restatement of the algorithm for normalized \(G \) (e.g., Ripley 1987) is

Repeat {
 Sample a point \(\theta \) from \(G(\; \cdot \;|y) \);
 Sample a Uniform(0, 1) random variable \(U \);
 If \(U \leq p(\; \theta \;|y) / G(\; \theta \;|y) \) accept \(\theta \);
}
until one \(\theta \) is accepted.

If \(p(\theta|y) \) is expensive to evaluate, time can be saved by identifying squeezing functions \(a(\theta|y) \) and \(b(\theta|y) \) with \(b(\theta|y) \leq p(\theta|y) \leq a(\theta|y) \); to use these, replace the acceptance step above (line 4 in the algorithm) by

If \(U > a(\; \theta \;|y) / G(\; \theta \;|y) \) reject \(\theta \);
else if \(U \leq b(\; \theta \;|y) / G(\; \theta \;|y) \) accept \(\theta \);
else if \(U \leq p(\; \theta \;|y) / G(\; \theta \;|y) \) accept \(\theta \).

Adaptive rejection sampling (ARS; Gilks and Wild 1992) is a method of adaptive envelope construction that works as a basis for Gibbs sampling if all of the full conditional densities are log concave (formally, a function \(p(\theta|y) \) of a vector argument \(\theta \) is log concave if the determinant of

\[
\frac{d^2 \log g}{dy dy^T}
\]

is non-positive).
For univariate θ the idea (see the figure on p. 29, part 3a) is that an envelope function $\log G_S(\theta|y)$ can be constructed on the log scale by drawing tangents to $\log p(\theta|y)$ at each point in a given set of θ values S.

An envelope between any two adjacent points is then constructed from the tangents at each end of the interval defined by the points:

The envelope is linear on the log scale, so rejection sampling on the original scale is performed with scaled exponential distributions (as noted earlier, this can be done efficiently), and you get a lower squeezing function for free.

The useful thing about this idea is that the envelope can be constructed adaptively, by adding points to S as new θ are sampled—thus the envelope improves as more samples are drawn.
WinBUGS (continued)

WinBUGS uses a hierarchy of methods to sample from the full conditionals: it first tries to verify conjugacy; if that fails it then tries to verify log concavity of the full conditionals and uses ARS if so; and if that fails WinBUGS switches over to (non-Gibbs) Metropolis-Hastings sampling.

Log concavity includes many, but not all, distributions occurring in standard models, e.g., a uniform $U(a,b)$ prior on the degrees of freedom parameter ν in the NB10 t model fails log-concavity.

Running WinBUGS. You make three kinds of files:

(1) a program file, containing the specification of your model;

(2) one or more data files; and

(3) an initial values file (to start the Markov chain).

Here’s the data file in the NB10 example.

```r
list( y = c( 409., 400., 406., 399., 402., 406., 401., 403., 401., 403.,
399., 399., 402., 399., 397., 407., 401., 399., 401., 403., 400.,
404., 403., 408., 404., 407., 412., 406., 409., 400., 408., 404.,
401., 404., 408., 406., 408., 406., 401., 412., 393., 437., 418.,
403., 404.), n = 100 )
```

The initial values file looks like this:

```r
list( mu = 404.59, tau = 0.04, nu = 5.0 )
```
And the model file looks like this:

```
{
    mu ~ dnorm( 0.0, 1.0E-6 ); # specifying the
    tau ~ dgamma( 0.001, 0.001 ); # prior distributions
    nu ~ dunif( 2.0, 12.0) #

    for ( i in 1:n ) {
        y[ i ] ~ dt( mu, tau, nu ); # likelihood
    } #

    sigma <- 1.0 / sqrt( tau ); # defining any other
    # quantities to be
    y.new ~ dt( mu, tau, nu ) # monitored
}
```

Some Details. (1) The priors: (a) I want to use a **diffuse** prior for \(\mu \), since I don’t know anything about the true weight of NB10 a priori.

The phrase \(\mu \sim \text{dnorm}(0.0, 1.0E-6) \) in WinBUGS-speak means that \(\mu \) has a Gaussian prior with mean 0 and precision \(10^{-6} \), i.e., SD = \(\frac{1}{\sqrt{\text{precision}}} = 1,000 \), i.e., as far as I’m concerned a priori \(\mu \) could be **just about anywhere** between −3,000 and 3,000.

(b) Similarly I want a **diffuse** prior for \(\sigma^2 \), or equivalently for the precision \(\tau = \frac{1}{\sigma^2} \).

One popular **conventional** choice is \(\tau \sim \Gamma(\epsilon, \epsilon) \) for a small \(\epsilon \) like 0.001, which in WinBUGS-speak is said \(\tau \sim \text{dgamma}(0.001, 0.001) \).
Implementation Details

This distribution is very close to flat over an extremely wide range of the interval \((0, \infty)\), although it does have a nasty spike at 0 (as \(\tau \downarrow 0, \Gamma(\epsilon, \epsilon)(\tau) \uparrow \infty\)).

As noted earlier, the idea behind diffuse priors is to make them approximately constant in the region in which the likelihood is appreciable.

For this purpose it’s useful to remember what the frequentist answers for \(\mu\) and \(\sigma\) would be, at least in the Gaussian model I mentioned earlier.

As an approximate Bayesian method, with the NB10 data a 95% confidence interval (CI) for \(\mu\) comes out \((403.3, 405.9)\), so you can guess that the likelihood for \(\mu\) would be non-negligible in the range from (say) 402 to 407.

As for \(\sigma\) (or \(\sigma^2\) or \(\tau\)), in the model \((Y_i|\mu, \sigma^2)^{\text{IID}} N(\mu, \sigma^2)\), it’s a standard result from frequentist distribution theory that in repeated sampling

\[
\frac{(n-1)s^2}{\sigma^2} \sim \chi^2_{n-1},
\]

(30)

where \(s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y})^2\) is random and \(\sigma^2\) is fixed, from which

\[
P_f \left[A \leq \frac{(n-1)s^2}{\sigma^2} \leq B \right] = 0.99
\]

(31)

for \(A, B\) such that

\[
P_f (\chi^2_{n-1} \leq A) = P_f (\chi^2_{n-1} \geq B) = 0.005.
\]

(32)

Thus, using Neyman’s confidence trick,

\[
P_f \left[\frac{(n-1)s^2}{B} \leq \sigma^2 \leq \frac{(n-1)s^2}{A} \right] = 0.99;
\]

(33)

in other words, \(\left[\frac{(n-1)s^2}{B}, \frac{(n-1)s^2}{A} \right]\) is a 99% confidence interval for \(\sigma^2\).
With the **NB10 data** \(n = 100 \) and \(s^2 = 41.82 \), and you can use R to do this analysis:

```r
> y

> print( n <- length( y ) )
[1] 100

> print( s2 <- var( y ) )
[1] 41.8201

> qchisq( 0.005, 99 )
[1] 66.5101

> qchisq( 0.995, 99 )
[1] 138.9868

> ( n - 1 ) * s2 / qchisq( 0.995, 99 )
[1] 29.78837

> ( n - 1 ) * s2 / qchisq( 0.005, 99 )
[1] 62.24904

> qchisq( 0.005, 99 ) / ( ( n - 1 ) * s2 )
[1] 0.01606451

> qchisq( 0.995, 99 ) / ( ( n - 1 ) * s2 )
[1] 0.03357015
So the conclusion is that the likelihood for $\tau = \frac{1}{\sigma^2}$ should be non-negligible roughly in the region from about 0.015 to 0.035.

The figure above plots the prior distributions for $\mu$ and $\tau$ and verifies their diffuseness in the relevant regions.

(c) As for the prior on $\nu$, you can tell from the normal qqplot of the NB10 data that the degrees of freedom parameter in the underlying $t$ distribution is fairly small.

I'm going to use a uniform $U(c_1, c_2)$ prior, where $c_1$ is small but not too small (as noted earlier, with $\nu < 2$ the variance is infinite, which is not realistic as a model for actual data) and $c_2$ is big enough not to truncate the likelihood function (experience tells me that $c_2 = 12$ will suffice; this can also be determined via MCMC experimentation).
More Details

(2) **Initial Values.** I can make fairly decent guesses at all the parameters as starting values for the Markov chain:

(a) The **sample mean** is 404.59, which should be close to the posterior mean for $\mu$ in the $t$ model;

(b) I'm just going to guess that $\nu$ is around 5.

(c) Earlier I said that $V[t_\nu(\mu, \sigma^2)] = \sigma^2 \left( \frac{\nu}{\nu-2} \right)$, so with $\nu \approx 5$ and a **sample variance** of 41.82 you get $\tau = \frac{1}{\sigma^2} \approx 0.04$.

**A Running Strategy.** With a problem like this with relatively few parameters, I often start off with a burn-in of roughly 1,000 and a monitoring run of 10,000–100,000 and then look at the MCMC diagnostics.

3.6 Practical MCMC monitoring and convergence diagnostics.

Remember questions (3) and (4) awhile ago?—(3) **How large** should $b$ and $m$ be? (4) More generally, how do you know when the chain has reached equilibrium?

A large body of research has grown up just in the last eight years or so to answer these questions (some good reviews are available in Gelman et al. 2003, Gilks et al. 1995, and Cowles and Carlin 1996).

The theoretical bottom line is unpleasant: you can't ever be sure you've reached equilibrium, in the sense that every MCMC diagnostic invented so far has at least one example in which it failed to diagnose problems.

However, a collection of four of the best diagnostics has been brought together in a set of R functions called CODA by Best, Cowles, and Vines (1995) (downloadable from the R web site).
MCMC Diagnostics (continued)

I'll briefly discuss each of these in the context of the **NB10 analysis**.

**Geweke** (1992) proposed a simple diagnostic based on **time series** ideas.

Thinking of each column of the MCMC dataset as a **time series** (with iterations indexing time), he reasoned that, if the chain were in equilibrium, the **means** of the first (say) 10% and the last (say) 50% of the iterations should be **nearly equal**.

His diagnostic is a $z$-score for testing this equality, with a separate value for each quantity being monitored: Geweke $z$-scores **a lot bigger than 2 in absolute value** indicate that the mean level of the time series is **still drifting**, even after whatever burn-in you’ve already done.

**GEWEKE CONVERGENCE DIAGNOSTIC (Z-score):**

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>bugs1</th>
</tr>
</thead>
<tbody>
<tr>
<td>========</td>
<td>=====</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>mu</td>
<td>2.39</td>
</tr>
<tr>
<td>nu</td>
<td>1.78</td>
</tr>
<tr>
<td>sigma</td>
<td>1.14</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Here with the NB10 data there's **some evidence of nonstationarity** with a burn-in of only 1,000 (although a $z$-value of 2.39 is **not overwhelming**).
Gelman-Rubin Shrink Factors

Gelman-Rubin (1992) have suggested a diagnostic that looks for multimodality of the posterior distribution.

If the posterior has (say) two major modes that are far away from each other in parameter space, and you initialize the chain near one of the modes, you may never find the other one.

The idea is to run the chain two or more times from widely-dispersed starting points and see if you always converge to the same place.

Gelman and Rubin do what amounts to an analysis of variance within and between the chains, looking for evidence of large variability between them.

“This comparison is used to estimate the factor by which the scale parameter of the marginal posterior distribution of each [quantity being monitored] might [shrink] if the chain were run to infinity” (Best et al., 1995).

The output is the 50% and 97.5% quantiles of the distributions of shrink factors, one for each quantity monitored.

If these quantiles are both close to 1.0 then there is little evidence of dispersion between the distributions to which the chains are converging.

Gelman and Rubin 50% and 97.5% Shrink Factors:
==============================================

Iterations used for diagnostic = 2501:5000
Thinning interval = 1
Sample size per chain = 5000
Raftery-Lewis Dependence Factors

Here, with initial values as different as 
$(\mu, \tau, \nu) = (405.0, 0.1823, 5.0)$ and $(402.0, 0.03, 11.0)$ there is no evidence of multimodality at all.

(To be really safe I should run a number of additional chains)—Gelman and Rubin (1992) give advice on how to generate the set of initial values to try—but with even modest sample sizes (like $n = 100$) the posterior in $t$ models is unimodal so there would be no point in this case.)

Raftery-Lewis (1992) suggested a diagnostic that directly helps to answer question (3)—How do you pick $b$ and $m$?

The answer to this question depends on how accurate you want your posterior summaries to be, so Raftery and Lewis require you to input three values:

(a) Which quantiles of the marginal posteriors are you most interested in?

Usually the answer is the 2.5% and 97.5% points, since they’re the basis of a 95% interval estimate.

(b) How close to the nominal levels would you like the estimated quantiles to be?
The CODA default is 0.5%, e.g., if the left-hand value of your 95% interval is supposed to be at the 2.5% point of the distribution, CODA will recommend a length of monitoring run so that the actual level of this quantile will be between 2.0% and 3.0%.

(NB This is sometimes more, and often less, Monte Carlo accuracy than you really need.)

(c) With what minimum probability do you want to achieve these accuracy goals? The default is 95%.

Having input these values, the output is of **five kinds** for each quantity monitored:

(a) A recommended **thinning interval**. When the Gibbs sampler is performing poorly people say the output is not **mixing well**, and what they mean is that the Markovian nature of the time series for each quantity has led to **large positive serial autocorrelations** in time, e.g., $\mu_{1000}$ depends highly on $\mu_{999}, \mu_{998}$, and so on.

This is another way to say that the **random draws** in the simulation process are **not moving around the parameter space quickly**.

When this happens, one way to reduce the autocorrelation is to **run the chain a lot longer and only record every $k$th iteration**—this is the **thinning interval**.

(b) A recommended length of **burn-in** to use, above and beyond whatever you’ve already done.

(c) A recommended **total length of run** $N$ (including burn-in) to achieve the desired accuracy.

(d) A **lower bound** $N_{\text{min}}$ on run length—what the minimum would have needed to be if the quantity in question had an **IID** time series instead of an autocorrelated series.
(e) And finally, the ratio $I = N/N_{\text{min}}$, which Raftery and Lewis call the dependence factor—values of $I$ near 1 indicate good mixing.

RAFTERY AND LEWIS CONVERGENCE DIAGNOSTIC:
==============================================

Iterations used = 1001:6000
Thinning interval = 1
Sample size per chain = 5000

Quantile = 0.025
Accuracy = +/- 0.005
Probability = 0.95

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>Thin (k)</th>
<th>Burn-in (M)</th>
<th>Total (N)</th>
<th>Lower bound (N_{\text{min}})</th>
<th>Dependence factor (I)</th>
</tr>
</thead>
<tbody>
<tr>
<td>mu</td>
<td>1</td>
<td>3</td>
<td>4533</td>
<td>3746</td>
<td>1.21</td>
</tr>
<tr>
<td>nu</td>
<td>3</td>
<td>18</td>
<td>39720</td>
<td>3746</td>
<td>10.6</td>
</tr>
<tr>
<td>sigma</td>
<td>3</td>
<td>12</td>
<td>13308</td>
<td>3746</td>
<td>3.55</td>
</tr>
</tbody>
</table>

Here $\mu$ is mixing well—5,000 iterations are sufficient to achieve the default accuracy goal—but $\sigma$ and (especially) $\nu$ require longer monitoring periods: the recommendation is to run for about 40,000 iterations and store every third.

Heidelberger-Welch (1983) propose a diagnostic approach that uses the Cramér-von Mises statistic to test for stationarity.

If overall stationarity fails for a given quantity being monitored, CODA discards the first 10% of the series for that quantity and recomputes the C-vonM statistic, continuing in this manner until only the final 50% of the data remain.
MCMC Diagnostics (continued)

If stationarity still fails with the last half of the data then CODA reports overall failure of the stationarity test.

CODA also computes a half-width test, which tries to judge whether the portion of the series that passed the stationarity test is sufficient to estimate the posterior mean with a particular default accuracy (NB this default is often not stringent enough for careful numerical work).

Here the table below shows that the first run with the NB10 data clears the Heidelberger-Welch hurdle with ease.

HEIDELBERGER AND WELCH STATIONARITY AND INTERVAL HALFWIDTH TESTS:
=================================================================
| VARIABLE | Stationarity test | # of iters. to keep | # of iters. to discard | C-vonM stat. |
| ========= | ============== | ================ | =============== | ========= |
| mu       | passed         | 5000            | 0               | 0.126     |
| nu       | passed         | 5000            | 0               | 0.349     |
| sigma    | passed         | 5000            | 0               | 0.176     |

Autocorrelations and Cross-correlations. CODA also computes the autocorrelations for each monitored quantity at lags from 1 to 50 and the cross-correlations between all of the variables.

38
MCMC Diagnostics (continued)

As mentioned previously, the autocorrelation at lag $k$ of a time series $\{\theta_t, t = 1, \ldots, m\}$ (e.g., Chatfield 1996) measures the extent to which the series at time $(t + k)$ and at time $t$ are linearly related, for $k = 1, 2, \ldots$.

The usual sample estimate of this quantity is

$$r_k = \frac{c_k}{c_0}, \text{ where } c_k = \frac{1}{m-k} \sum_{t=1}^{m-k} (\theta_t^* - \bar{\theta}^*) (\theta_{t+k}^* - \bar{\theta}^*)$$  \hspace{1cm} (34)

and $\bar{\theta}^* = \frac{1}{m} \sum_{t=1}^m \theta_t^*$.

The cross-correlation at lag $k$ of two time series $\{\theta_t^*, t = 1, \ldots, m\}$ and $\{\eta_t^*, t = 1, \ldots, m\}$ measures the extent to which the first series at time $(t + k)$ and the second at time $t$ are linearly related, for $k = 1, 2, \ldots$.

A natural sample estimate of this quantity is

$$r_{\theta \eta}(k) = \frac{c_{\theta \eta}(k)}{\sqrt{c_{\theta \theta}(0)c_{\eta \eta}(0)}}, \text{ where }$$

$$c_{\theta \eta}(k) = \frac{1}{m-k} \sum_{t=1}^{m-k} (\theta_t^* - \bar{\theta}^*) (\eta_{t+k}^* - \bar{\eta}^*).$$  \hspace{1cm} (35)

LAGS AND AUTOCORRELATIONS WITHIN EACH CHAIN:

<table>
<thead>
<tr>
<th>Chain</th>
<th>Variable</th>
<th>Lag 1</th>
<th>Lag 10</th>
<th>Lag 50</th>
</tr>
</thead>
<tbody>
<tr>
<td>bugs1</td>
<td>mu</td>
<td>0.29400</td>
<td>0.00118</td>
<td>-0.01010</td>
</tr>
<tr>
<td></td>
<td>nu</td>
<td>0.97200</td>
<td>0.78900</td>
<td>0.32100</td>
</tr>
<tr>
<td></td>
<td>sigma</td>
<td>0.62100</td>
<td>0.30300</td>
<td>0.10800</td>
</tr>
</tbody>
</table>
Diagnostic and Summary Plots

CROSS-CORRELATION MATRIX:

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>mu</th>
<th>nu</th>
<th>sigma</th>
</tr>
</thead>
<tbody>
<tr>
<td>mu</td>
<td>1.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nu</td>
<td>0.0946 1.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sigma</td>
<td>0.0534 0.5540 1.0000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

You can see (a) that the series for $\nu$ is especially strongly autocorrelated, and (b) that $\nu$ and $\sigma$ are fairly strongly positively correlated, which connects with the observation earlier about confounding of scale and shape in the $t$ family.

Diagnostic and Summary Plots. The figure below presents four plots that are useful as MCMC diagnostics and for graphical summaries of posterior distributions, in the case of the parameter $\nu$ with run 1 from the NB10 data.
Diagnostic and Summary Plots

(WinBUGS can produce all but the lower right panel of this figure; MLwiN makes this plot routinely.)

The upper left panel is a time series trace, which documents the poor mixing that has been evident from several of the numerical diagnostics.

The lower left panel is a plot of the autocorrelation function (ACF) for $\nu$, and the lower right panel plots the partial autocorrelation function (PACF).

One of the most common behaviors observed in time series in general, and in the output of MCMC samplers in particular, is that of an autoregressive process.

Letting $e_t$ denote an IID (or white-noise or purely random) process with mean 0 and variance $\sigma^2_e$, the time series $\theta_t^*$ is said to be an autoregressive process of order $p$ ($AR_p$) if

$$\theta_t^* = \alpha_1\theta_{t-1}^* + \ldots + \alpha_p\theta_{t-p}^* + e_t.$$  \hfill (36)

Equation (36) is like a multiple regression model except that $\theta_t^*$ is being regressed on past values of itself instead of on other predictor variables; this gives rise to the term autoregressive.

The partial autocorrelation function (PACF) measures the excess correlation between $\theta_t^*$ and $\theta_{t+k}^*$ not accounted for by the autocorrelations $r_1, \ldots, r_{k-1}$, and is useful in diagnosing the order of an $AR_p$ process: if $\theta_t^*$ is $AR_p$ then the PACF at lags 1, $\ldots$, $p$ will be significantly different from 0 and then close to 0 at lags larger than $p$.

The lower right-hand plot above shows the characteristic single spike at lag 1 which diagnoses an $AR_1$ series (the dotted lines in the ACF and PACF plots represent 2 standard error traces around 0, indicating how big an ACF or PACF value needs to be to be significantly different from 0).
**MCMC Accuracy**

This is reinforced by the ACF plot: if $\theta^*_t$ is $AR_1$ with positive first-order autocorrelation $\rho_1$ then the autocorrelation function should show a slow geometric decay (a ski-slope shape), which it clearly does in this case.

We would conclude that the Gibbs sampling output for $\nu$, when thought of as a **time series**, behaves like an $AR_1$ process with **first-order autocorrelation** roughly $r_1 = 0.972$ (from the table above).

**MCMC Accuracy.** Suppose that $\theta^*_t$ is a **stationary time series** with underlying true mean $\mu_\theta$ and variance $\sigma^2_\theta$.

It can be shown that if $\{\theta^*_t, t = 1, \ldots, m\}$ is $AR_1$ with first-order autocorrelation $\rho_1$ then in repeated sampling the uncertainty about $\mu_\theta$ on the basis of the sample mean $\bar{\theta}^*$ is quantified by

$$V(\bar{\theta}^*) = \frac{\sigma^2_\theta}{m} \left(\frac{1 + \rho_1}{1 - \rho_1}\right). \quad (37)$$

Thus if you want to use MCMC to estimate the posterior mean of a given quantity $\theta$ with **sufficient accuracy** that the standard error of the Monte Carlo mean estimate $\hat{\bar{\theta}}^*$ based on a monitoring run of length $m$ is no larger than a specified tolerance $T$, and the MCMC output $\theta^*$ behaves like an $AR_1$ series with first-order autocorrelation $\rho_1$, you would need $m$ to satisfy

$$\widehat{SE}(\bar{\theta}^*) = \frac{\hat{\sigma}_\theta}{\sqrt{m}} \sqrt{\frac{1 + \hat{\rho}_1}{1 - \hat{\rho}_1}} \leq T, \quad (38)$$

from which

$$m \geq \frac{\hat{\sigma}^2_\theta}{T^2} \left(\frac{1 + \hat{\rho}_1}{1 - \hat{\rho}_1}\right). \quad (39)$$
Diagnostic Plots (continued)

This formula explains why monitoring runs with MCMC often need to be quite long: as \( \rho_1 \to 1 \) the required \( m \to \infty \).

For example, we have seen that \( \hat{\rho}_1 = r_1 \) for \( \nu \) in the NB10 \( t \) model is \(+0.972\), and we will see below that the sample mean and SD based on the output for \( \nu \) are roughly 3.628 and 1.161, respectively.

If you wanted to be able to report the posterior mean of \( \nu \) to 3–significant-figure accuracy (3.63) with reasonably high Monte Carlo probability, you would want \( T \) to be on the order of 0.01, giving an enormous monitoring run:

\[
m \geq \left( \frac{1.161}{0.01} \right)^2 \left( \frac{1 + 0.972}{1 - 0.972} \right) = (13,479)(70.4) \]

\[
\approx 949,322. 
\]

This is much larger than the Raftery-Lewis default recommendation above (there is no conflict in this fact; the two diagnostics are focusing on different posterior summaries).

Note from (40) that if you could figure out how to sample in an IID manner from the posterior for \( \theta \) you would only need

\[
m_{\text{IID}} \geq \frac{\hat{\sigma}_6^2}{T^2},
\]

which in this case is about 13,500 draws.

The term \( \left( \frac{1 + \hat{\rho}_1}{1 - \hat{\rho}_1} \right) \) in (40) represents the amount by which \( m_{\text{IID}} \) would need to be multiplied to get the same accuracy from MCMC output—it’s natural to call this the sample size inflation factor (SSIF), which for \( \nu \) comes out a whopping 70.4.

The upper right panel in the diagnostic plots above gives a density trace for \( \nu \), which shows a mode at about 3 degrees of freedom and a long right-hand tail.
All the parameters are **mixing well now**, so numerical posterior summaries are worth making, as in the table below.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Posterior Mean</th>
<th>Posterior SD</th>
<th>95% Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mu$</td>
<td>404.3</td>
<td>0.4641</td>
<td>(403.4, 405.2)</td>
</tr>
<tr>
<td>$\nu$</td>
<td>3.63</td>
<td>1.16</td>
<td>(2.2, 6.6)</td>
</tr>
<tr>
<td>$\sigma$</td>
<td>3.873</td>
<td>0.4341</td>
<td>(3.100, 4.778)</td>
</tr>
</tbody>
</table>
WinBUGS Implementation

I read in three files—the model, the data, and the initial values—and used the Specification Tool from the Model menu to check the model, load the data, compile the model, load the initial values, and generate additional initial values for uninitialized nodes in the graph.

I then used the Sample Monitor Tool from the Inference menu to set the mu, sigma, nu, and y.new nodes, and clicked on Dynamic Trace plots for mu and nu.

Then choosing the Update Tool from the Model menu, specifying 2000 in the updates box, and clicking update permitted a burn-in of 2,000 iterations to occur with the time series traces of the two parameters displayed in real time.
After **minimizing** the model, data, and inits windows and **killing** the Specification Tool (which are no longer needed until the model is respecified), I typed 10000 in the **updates** box of the **Update Tool** and clicked **update** to generate a **monitoring run** of 10,000 iterations (you can watch the updating of \( \mu \) and \( \nu \) dynamically to get an idea of the **mixing**, but this slows down the sampling).

After **killing** the Dynamic Trace window for \( \nu \) (to concentrate on \( \mu \) for now), in the Sample Monitor Tool I selected \( \mu \) from the pull-down menu, set the **beg** and **end** boxes to 2001 and 12000, respectively (to summarize only the **monitoring** part of the run), and clicked on **history** to get the **time series trace** of the monitoring run, **density** to get a **kernel density trace** of the 10,000 iterations, **stats** to get **numerical summaries** of the monitored iterations, **quantiles** to get a trace of the **cumulative estimates** of the 2.5%, 50% and 97.5% points in the estimated posterior, and **autoC** to get the **autocorrelation function**.
You can see that the output for $\mu$ is mixing fairly well—the ACF looks like that of an $AR_1$ series with first-order serial correlation of only about 0.3.

$\sigma$ is mixing less well: its ACF looks like that of an $AR_1$ series with first-order serial correlation of about 0.6.

This means that a monitoring run of 10,000 would probably not be enough to satisfy minimal Monte Carlo accuracy goals—for example, from the Node statistics window the estimated posterior mean is 3.878 with an estimated MC error of 0.0128, meaning that we’ve not yet achieved three-significant-figure accuracy in this posterior summary.
And ν's mixing is the worst of the three: its ACF looks like that of an AR₁ series with first-order serial correlation of a bit less than +0.9.

WinBUGS has a somewhat complicated provision for printing out the autocorrelations; alternately, you can approximately infer \( \hat{\rho}_1 \) from an equation like (39) above: assuming that the WinBUGS people are taking the output of any MCMC chain as (at least approximately) AR₁ and using the formula

\[
\hat{SE}(\bar{\theta}^*) = \frac{\hat{\sigma}_\theta}{\sqrt{m}} \sqrt{\frac{1 + \hat{\rho}_1}{1 - \hat{\rho}_1}},
\]

you can solve this equation for \( \hat{\rho}_1 \) to get

\[
\hat{\rho}_1 = \frac{m \left[ \hat{SE}(\bar{\theta}^*) \right]^2 - \hat{\sigma}_\theta^2}{m \left[ \hat{SE}(\bar{\theta}^*) \right]^2 + \hat{\sigma}_\theta^2}.
\]

\( 48 \)
WinBUGS Implementation (continued)

Plugging in the relevant values here gives

\[ \hat{\rho}_1 = \frac{(10,000)(0.04253)^2 - (1.165)^2}{(10,000)(0.04253)^2 + (1.165)^2} = 0.860. \]  

(43)

To get more MCMC accuracy I typed 30000 in the updates window in the Update Tool and hit update, yielding a total monitoring run of 40,000; the summaries below for \( \mu \) are satisfactory in every way.
WinBUGS Implementation (continued)

A monitoring run of 40,000 also looks good for $\sigma$: on this basis, and conditional on this model and prior, I think $\sigma$ is around 3.87 (posterior mean, with an MCSE of 0.006), give or take about 0.44 (posterior SD), and my 95% central posterior interval for $\sigma$ runs from about 3.09 to about 4.81 (the distribution has a bit of skewness to the right, which makes sense given that $\sigma$ is a scale parameter).
If the real goal were $\nu$ I would use a longer monitoring run, but the main point here is $\mu$, and we saw back on p. 40 that $\mu$ and $\nu$ are close to uncorrelated in the posterior, so this is good enough.

If you wanted to report the posterior mean of $\nu$ with an MCSE of 0.01 (to come close to 3-sigfig accuracy) you’d have to increase the length of the monitoring run by a multiplicative factor of $\left(\frac{0.02213}{0.01}\right)^2 \approx 4.9$, which would yield a recommended length of monitoring run of about 196,000 iterations (the entire monitoring phase would take about 3 minutes at 2.0 (PC) GHz).
The **posterior predictive distribution** for $y_{n+1}$ given $(y_1, \ldots, y_n)$ is interesting in the $t$ model: the predictive mean and SD of 404.3 and 6.44 are **not far** from the sample mean and SD (404.6 and 6.5, respectively), but the predictive distribution has **very heavy tails**, consistent with the degrees of freedom parameter $\nu$ in the $t$ distribution being so small (the time series trace has a few simulated values less than 300 and greater than 500, **much farther** from the center of the observed data than the most outlying actual observations).
The posterior SD for $\mu$, the only parameter directly comparable across the Gaussian and $t$ models for the NB10 data, came out $\lceil 0.47 \rceil$ from the $t$ modeling, versus $\lceil 0.65 \rceil$ with the Gaussian, i.e., the interval estimate for $\mu$ from the (incorrect) Gaussian model is about 40% wider than that from the (much better-fitting) $t$ model.
A Model Uncertainty Anomaly?

NB Moving from the Gaussian to the \( t \) model involves a net increase in model uncertainty, because when you assume the Gaussian you’re in effect saying that you know the \( t \) degrees of freedom are \( \infty \), whereas with the \( t \) model you’re treating \( \nu \) as unknown. And yet, even though there’s been an increase in model uncertainty, the inferential uncertainty about \( \mu \) has gone down.

This is relatively rare—usually when model uncertainty increases so does inferential uncertainty (Draper 2004)—and arises in this case because of two things: (a) the \( t \) model fits better than the Gaussian, and (b) the Gaussian is actually a conservative model to assume as far as inferential accuracy for location parameters is concerned.
CODA in R

If you go to [http://www.r-project.org/](http://www.r-project.org/), click on CRAN (the Comprehensive R Archive Network), click on one of the CRAN mirror sites, and click on Package Sources, you’ll find a lot of contributed packages, one of which is CODA.

Clicking on coda will get you the source code for CODA (you can also visit [http://www-fis.iarc.fr/coda/](http://www-fis.iarc.fr/coda/), a web site maintained by Martyn Plummer, the guy who ported CODA from S+ to R).

In this way you can download the source for R-CODA and follow the instructions for installing it.

An easier way, if you’re running R on a machine that’s connected to the internet, is to go into R and just type

```r
install.packages("coda")
```

If everything goes smoothly this will automatically install R-CODA on your machine.

Once you have it in your local library you can invoke it from inside R with the command

```r
library(coda)
```

and you can find out what it can do with the command

```r
help(package = coda)
```

The idea is to run classicBUGS or WinBUGS, store the MCMC dataset somewhere handy, go into R, and use R-CODA to read the MCMC dataset in and analyze it.

All of the MCMC diagnostics described above are available to you with this approach.
3.7 References


