AMS 206/132, Winter 2014: Classical and Bayesian Inference

David Draper

Department of Applied Mathematics and Statistics
University of California, Santa Cruz

draper@ams.ucsc.edu
www.ams.ucsc.edu/~draper

CLASS WEB PAGE:
classes.soe.ucsc.edu/ams206/Winter14/

Lecture Notes, Part 4 (Exchangeability and Conjugate Modeling)
2: Exchangeability and Conjugate Modeling

2.1 Probability as quantification of uncertainty about observables; binary outcomes

Case Study: Hospital-specific prediction of mortality rates. Suppose I’m interested in measuring the quality of care (e.g., Kahn et al., 1990) offered by one particular hospital.

I’m thinking of the Dominican Hospital (DH) in Santa Cruz, CA; if this were Your problem You’d have a different hospital in mind.

As part of this I decide to examine the medical records of all patients treated at the DH in one particular time window, say January 2006–December 2009, for one particular medical condition for which there’s a strong process-outcome link, say acute myocardial infarction (AMI; heart attack).

(Process is what health care providers do on behalf of patients; outcomes are what happens as a result of that care.)

In the time window I’m interested in there will be about $n = 400$ AMI patients at the DH.
The Meaning of Probability

To keep things simple I’ll ignore process for the moment and focus here on one particular outcome: death status (mortality) as of 30 days from hospital admission, coded 1 for dead and 0 for alive.

(In addition to process this will also depend on the sickness at admission of the AMI patients, but I’ll ignore that initially too.)

From the vantage point of December 2005, say, what may be said about the roughly 400 1s and 0s I’ll observe in 2006–09?

The meaning of probability. I’m definitely uncertain about the 0–1 death outcomes \(Y_1, \ldots, Y_n \) before I observe any of them.

Probability is supposed to be the part of mathematics concerned with quantifying uncertainty; can probability be used here?

In part 1 I argued that the answer was yes, and that three types of probability — classical, frequentist, and Bayesian — are available (in principle) to quantify uncertainty like that encountered here.

The classical approach turns out to be impractical to implement in all but
2.2 Review of Frequentist Modeling

the simplest problems; I’ll focus here on the frequentist and Bayesian stories.

Frequentist modeling. By definition the frequentist approach is based on the idea of hypothetical or actual repetitions of the process being studied, under conditions that are as close to independent identically distributed (IID) sampling as possible.

When faced with a data set like the 400 1s and 0s \(Y_1, \ldots, Y_n\) here, the usual way to do this is to think of it as a random sample, or like a random sample, from some population that’s of direct interest to me.

Then the randomness in Your probability statements refers to the process of what You might get if You were to repeat the sampling over and over — the \(Y_i\) become random variables whose probability distribution is determined by this hypothetical repeated sampling.

There are two main flavors of frequentist modeling: confidence intervals (Neyman) and likelihood inference (Fisher); the diagram on the next page summarizes the essence of the Neyman frequentist approach.
The Basic Frequentist Model Diagram

(see sketch presented in class)
Neyman Frequentist Modeling

On the previous page SD stands for standard deviation, the most common measure of the extent to which the observations y_i in a data set vary, or are spread out, around the center of the data.

The center is often measured by the mean $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$, and the SD of a sample of size n is then given by

$$SD = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y})^2}. \hspace{1cm} (1)$$

The population size is denoted by N; this is often much larger than the sample size n.

With 0/1 (dichotomous) data, like the mortality outcomes in this case study, the population mean μ simply records the proportion p of 1s in the population (check this), and similarly the sample mean \bar{y} keeps track automatically of the observed death rate \hat{p} in the sample.

As $N \to \infty$ the population SD σ with 0/1 data takes on a simple form (check this):
\[
\sigma = \sqrt{p(1-p)}.
\]

(2)

It’s common in frequentist modeling to make a notational distinction
between the random variables \(Y_i \) (the placeholders for the process of making
IID draws from the population over and over) and the values \(y_i \) that the \(Y_i \)
might take on (although I’ll abuse this notation with \(\hat{\rho} \) below).

In the diagram on page 5 the relationship between the population and
the sample data sets can be usefully considered in each of two directions:

- If the population is known, You can think about how the sample is likely
to come out under IID sampling — this is a probability question.

 Here in this case \(p \) would be known and You’re trying to figure out the
 random behavior of the sample mean \(\bar{Y} = \hat{\rho} \).

- If instead only the sample is known, Your job is to infer the likely
 composition of the population that could have led to this IID sample —
 this is a question of statistical inference.
In this problem the sample mean $\bar{y} = \hat{p}$ would be known and Your job would be to estimate the population mean p.

Suppose that $N \gg n$, i.e., that even if SRS was used You’re effectively dealing with IID sampling.

Intuitively both SRS and IID should be “good” — representative — sampling methods (meaning that the sampled and unsampled elements of the population should be similar), so that \hat{p} should be a “good” estimate of p, but what exactly does the word “good” mean in this sentence?

Evidently a good estimator \hat{p} would be likely to be close to the truth p, especially with a lot of data (i.e., if n is large).

In the frequentist approach to inference, quantifying this idea involves imagining how \hat{p} would have come out if the process by which the observed $\hat{p} = 0.18$ came to You were repeated under IID conditions.

This gives rise to the repeated-sampling data set, the third part of the diagram on page 5: we imagine all possible \hat{p} values based on an IID sample of size n from a population with $100p\%$ 1s and $100(1 - p)\%$ 0s.
Expected Value and Standard Error

Let M be the **number of hypothetical repetitions** in the repeated-sampling data set.

The **long-run mean** (as $M \to \infty$) of these imaginary \hat{p} values is called the **expected value** of the random variable \hat{p}, written $E(\hat{p})$ or $E_{\text{IID}}(\hat{p})$ to emphasize the mechanism of drawing the sample from the population.

The **long-run SD** of these imaginary \hat{p} values is called the **standard error** of the random variable \hat{p}, written $SE(\hat{p})$ or $SE_{\text{IID}}(\hat{p})$.

It’s **natural** in studying how the hypothetical \hat{p} values **vary** around the **center** of the repeated-sampling data set to make a **histogram** of these values: this is a plot with the **possible values** of \hat{p} along the **horizontal scale** and the **frequencies** with which \hat{p} takes on those values on the **vertical scale**.

It’s **helpful** to draw this plot on the **density scale**, which just means that the **vertical scale** is chosen so that the **total area** under the **histogram** is 1.

The **long-run distribution** (histogram) of the imaginary \hat{p} values on the **density scale** is called the **(probability) density** of the random variable \hat{p}.
Central Limit Theorem

The values of $E(\hat{p})$ and $SE(\hat{p})$, and the basic shape of the density of \hat{p}, can be determined mathematically (under IID sampling) and verified by simulation; it turns out that

$$E_{\text{IID}}(\hat{p}) = p \quad \text{and} \quad SE_{\text{IID}}(\hat{p}) = \frac{\sigma}{\sqrt{n}} = \sqrt{\frac{p(1-p)}{n}}, \quad (3)$$

and the density of \hat{p} for large n is well approximated by the normal curve or Gaussian distribution (this result is the famous Central Limit Theorem (CLT)).

Suppose the sample of size $n = 400$ had 72 1s and 328 0s; then $\hat{p} = \frac{72}{400} = 0.18$. Thus You would estimate that the population mortality rate p is around 18%, but how much uncertainty should be attached to this estimate?

The above standard error formula is not directly usable because it involves the unknown p, but we can estimate the standard error by plugging in \hat{p}:

$$\hat{SE}(\hat{p}) = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} = \sqrt{\frac{(0.18)(0.82)}{400}} \approx 0.019. \quad (4)$$
Neyman (1923): Confidence Intervals

In other words, we think \(p \) is around 18\%, give or take about 1.9\%.

A probabilistic uncertainty band can be obtained with the frequentist approach by appeal to the CLT, which says that (for large \(n \)) in repeated sampling \(\hat{p} \) would fluctuate around \(p \) like draws from a normal curve with mean \(p \) and SD (SE) 0.019, i.e.,

\[
0.95 \doteq P_F \left[p - 1.96 \overline{SE}(\hat{p}) \leq \hat{p} \leq p + 1.96 \overline{SE}(\hat{p}) \right] \\
= P_F \left[\hat{p} - 1.96 \overline{SE}(\hat{p}) \leq p \leq \hat{p} + 1.96 \overline{SE}(\hat{p}) \right]. \tag{5}
\]

Thus a 95\% (frequentist) confidence interval for \(p \) runs from \(\hat{p} - 1.96 \overline{SE}(\hat{p}) \) to \(\hat{p} + 1.96 \overline{SE}(\hat{p}) \), which in this case is from \(0.180 - (1.96)(0.019) = 0.142 \) to \(0.180 + (1.96)(0.019) = 0.218 \), i.e., we’re “95\% confident that \(p \) is between about 14\% and 22\%”; but what does this mean?

Everybody wants the confidence interval (CI) to mean

\[
P_F(0.142 \leq p \leq 0.218) \doteq 0.95, \tag{6}
\]
but it can’t mean that in the frequentist approach to probability: in that approach p is treated as a fixed unknown constant, which either is or is not between 0.142 and 0.218.

So what does it mean?

(see sketch presented in class)

This is a kind of calibration of the CI process: about 95% of the nominal 95% CIs would include the true value, if You were to generate a lot of them via independent IID samples from the population.
Random Variable Shorthand

The **diagram** on page 5 takes up a lot of space; it would be nice to have a more succinct summary of it.

A random variable Y is said to follow the **Bernoulli distribution** with **parameter** $0 < p < 1$ (a parameter is just a fixed unknown constant) — this is summarized by saying $Y \sim \text{Bernoulli}(p)$ — if Y takes on only the values 1 and 0 and

$$P(Y = y) = \begin{cases}
 p & \text{if } y = 1 \\
 1 - p & \text{if } y = 0
\end{cases} = p^y (1 - p)^{1-y}. \quad (7)$$

Another **popular name** for the parameter p in this model is θ.

Evidently what the population and sample parts of the diagram on page 5 are trying to say, in this notation, is that (Y_1, \ldots, Y_n) are drawn in an **IID** fashion from the Bernoulli distribution with parameter θ.

In the usual **shorthand**, which I’ll use from now on, this is expressed as

$$Y_i \overset{\text{IID}}{\sim} \text{Bernoulli}(\theta), \quad i = 1, \ldots, n \quad \text{for some } 0 < \theta < 1. \quad (8)$$
What’s the Population?

This is the frequentist statistical model for the AMI mortality data, except that we’ve forgotten so far to specify an important ingredient: what’s the population of patients whose mean (underlying death rate) is θ?

As a frequentist (recall page 4), to use probability to quantify Your uncertainty about the 1s and 0s, You have to think of them as either literally a random sample or like a random sample from some population (hypothetical or actual); what are some possibilities for this population?

- (Fisher: hypothetical) All AMI patients who might have come to the DH in 2006–09 if the world had turned out differently; or

- Assuming sufficient time-homogeneity in all relevant factors, You could try to argue that the collection of all 400 AMI patients at the DH from 2006–09 is like a random sample of size 400 from the population of all AMI patients at the DH from (say) 2000–2015; or

 - Cluster sampling is a way to choose, e.g., patients by taking a random sample of hospitals and then a random sample of patients nested within those hospitals; what we actually have here is a kind of cluster sample of all 400 AMI patients from the DH in 2006–2009.
Cluster samples tend to be less informative than simple random samples (SRSs) of the same size because of (positive) \textit{intracluster correlation} (patients in a given hospital tend to be more similar in their outcomes than would an SRS of the same size from the population of all the patients in all the hospitals).

Assuming the DH to be representative of some broader collection of hospitals in California and (unwisely) ignoring intracluster correlation, You could try to argue that these 400 1s and 0s were \textit{like} a simple random sample of 400 AMI patients from this larger collection of hospitals.

\textbf{None of these options is entirely compelling;} but if You’re willing to pretend the data are like a sample from some population, interest would then focus on inference about the \textit{parameter} θ, the “underlying death rate” in this larger collection of patients to which You feel comfortable generalizing the 400 1s and 0s: if θ were unusually high, that would be \textit{prima facie} evidence of a possible quality of care problem.

Suppose (as above) that the frequentist model is

$$Y_i \overset{\text{IID}}{\sim} \text{Bernoulli}(\theta), \quad i = 1, \ldots, n$$

for some $0 < \theta < 1$. \hfill (9)
Fisher Frequentist Modeling

Since the Y_i are independent, the joint sampling distribution of all of them, $P(Y_1 = y_1, \ldots, Y_n = y_n)$, is the product of the separate, or marginal, sampling distributions $P(Y_1 = y_1), \ldots, P(Y_n = y_n)$:

$$P(Y_1 = y_1, \ldots, Y_n = y_n) = P(Y_1 = y_1) \cdots P(Y_n = y_n)$$

$$= \prod_{i=1}^{n} P(Y_i = y_i). \quad (10)$$

But since the Y_i are also identically distributed, and each one is Bernoulli(θ), i.e., $P(Y_i = y_i) = \theta^{y_i} (1 - \theta)^{1-y_i}$, the joint sampling distribution can be written

$$P(Y_1 = y_1, \ldots, Y_n = y_n) = \prod_{i=1}^{n} \theta^{y_i} (1 - \theta)^{1-y_i}. \quad (11)$$

Let’s use the symbol y to stand for the vector of observed data values (y_1, \ldots, y_n).

Before any data have arrived, this joint sampling distribution is a function of y for fixed θ — it tells You how the data would be likely to behave in the future if You were to take an IID sample from the Bernoulli(θ) distribution.
In 1921 Fisher had the following idea (Laplace (1774) had it first): after the data have arrived it makes more sense to interpret (11) as a function of θ for fixed y — this is the **likelihood function** for θ in the Bernoulli(θ) model:

$$l(\theta|y) = l(\theta|y_1, \ldots, y_n) = \prod_{i=1}^{n} \theta^{y_i} (1 - \theta)^{1-y_i}$$

(12)

$$= P(Y_1 = y_1, \ldots, Y_n = y_n) \text{ but interpreted as a function of } \theta \text{ for fixed } y.$$

Fisher tried to create a theory of **inference** about θ based only on this function — this turns out to be an important ingredient, **but not the only important ingredient**, in inference from the Bayesian viewpoint.

The Bernoulli(θ) likelihood function can be **simplified** as follows:

$$l(\theta|y) = \theta^s (1 - \theta)^{n-s},$$

(13)

where $s = \sum_{i=1}^{n} y_i$ is the number of 1s in the sample and $(n - s)$ is the number of 0s.
The Likelihood Function (continued)

What does this function look like, e.g., with $n = 400$ and $s = 72$ (this is similar to data you would get from the DH: a 30-day mortality rate from AMI of 18%)?

This looks a lot like a Gaussian distribution (not yet density-normalized) for θ, which is the Bayesian way to interpret the likelihood function (see below).
Likelihood and Log Likelihood

Note that the likelihood function \(l(\theta|y) = \theta^s (1 - \theta)^{n-s} \) in this problem depends on the data vector \(y \) only through \(s = \sum_{i=1}^{n} y_i \) — Fisher referred to any such data summary as a **sufficient statistic** (with respect to the assumed sampling model).

It’s often at least as useful to look at the **logarithm** of the likelihood function as the likelihood function itself:

In this case, as is often true for large \(n \), the log likelihood function looks **locally quadratic around its maximum** (why?).
Maximizing the Likelihood Function

Fisher had the further idea that the maximum of the likelihood function would be a good estimate of \(\theta \) (we’ll look later at conditions under which this makes sense from the Bayesian viewpoint).

Since the logarithm function is monotone increasing, it’s equivalent in maximizing the likelihood to maximize the log likelihood, and for a function as well behaved as this You can do that by setting its first partial derivative with respect to \(\theta \) to 0 and solving; here You get the familiar result

\[
\hat{\theta}_{\text{MLE}} = \frac{s}{n} = \bar{y}.
\]

The function of the data that maximizes the likelihood (or log likelihood) function is the maximum likelihood estimate (MLE) \(\hat{\theta}_{\text{MLE}} \).

Note also that if You maximize \(l(\theta|y) \) and I maximize \(c l(\theta|y) \) for any constant \(c > 0 \), we’ll get the same thing, i.e., the likelihood function is only defined up to a positive multiple; Fisher’s actual definition was

\[
l(\theta|y) = c P(Y_1 = y_1, \ldots, Y_n = y_n) \quad \text{for any (normalizing constant) } c > 0.
\]
Calibrating the MLE

From now on c in expressions like the likelihood function above will be a **generic** (and often **unspecified**) positive constant.

Maximum likelihood provides a basic principle for estimation of a (population) parameter θ from the frequentist/likelihood point of view, but how should the **accuracy** of $\hat{\theta}_{\text{MLE}}$ be assessed?

Evidently in the frequentist approach You want to compute the **variance** or **standard error** of $\hat{\theta}_{\text{MLE}}$ in repeated sampling, or estimated versions of these quantities — I’ll focus on the estimated variance $\hat{V}(\hat{\theta}_{\text{MLE}}) = \left(\hat{SE}(\hat{\theta}_{\text{MLE}})\right)^2$.

Fisher (1922) also proposed an **approximation** to $\hat{V}(\hat{\theta}_{\text{MLE}})$ that works well for large n and makes **good intuitive sense**.

In the **AMI mortality** case study, where $\hat{\theta}_{\text{MLE}} = \hat{\theta} = \frac{s}{n}$ (the sample mean), it’s easy to show that

$$V(\hat{\theta}_{\text{MLE}}) = \frac{\theta(1-\theta)}{n} \quad \text{and} \quad \hat{V}(\hat{\theta}_{\text{MLE}}) = \frac{\hat{\theta}(1-\hat{\theta})}{n},$$

but Fisher wanted to derive results like this in a more **basic** and **general** way.
Examining the Log Likelihood Function

Imagine **quadrupling** the sample size in this case study from $n = 400$ to $n = 1600$ while keeping the observed death rate constant at 0.18 — what would happen to the **log likelihood function**?

To answer this question, recall (page 20) that as far as maximizing the likelihood function is concerned it’s equally good to work with any (**positive**) **constant multiple** of it, which is equivalent to saying that we can **add any constant** we want to the log likelihood function without harming anything.

In the **Maple** plot below I’ve added a **different constant** to each of the log likelihood functions with $(s, n) = (72, 400)$ and $(288, 1600)$ so that they both go through the point $(\hat{\theta}_{MLE}, 0)$:

```
sauternes 235> maple
  \|/| Maple 9.5 (SUN SPARC SOLARIS)
._\|   \|/\_. Copyright (c) Maplesoft, Waterloo Maple Inc. 2004
 \ MAPLE / All rights reserved. Maple is a trademark of
 <____ ____> Waterloo Maple Inc.
   | Type ? for help.
```
Examining the Log Likelihood Function (continued)

```maple
> ll := (theta, s, n) -> s * log(theta) + (n - s) * log(1 - theta);
> plotsetup(x11);
> plot({ll(theta, 72, 400) - evalf(ll(72/400, 72, 400)),
       ll(theta, 288, 1600) - evalf(ll(288/1600, 288, 1600))},
     theta = 0.12 .. 0.25, color = black);
```

Bayesian Statistics 2: Exchangeability and Conjugate Modeling 23
Fisher Information

Notice that what’s happened as \(n \) went from 400 to 1600 while holding the MLE constant at 18% mortality is that the second derivative of the log likelihood function at \(\hat{\theta}_{\text{MLE}} \) (a negative number) has increased in size.

This led Fisher to define a quantity he called the information in the sample about \(\theta \) — in his honor it’s now called the (observed) Fisher information:

\[
\hat{I}\left(\hat{\theta}_{\text{MLE}}\right) = \left[-\frac{\partial^2}{\partial \theta^2} \log l(\theta|y)\right]_{\theta=\hat{\theta}_{\text{MLE}}}. \quad (15)
\]

This quantity increases as \(n \) goes up, whereas our uncertainty about \(\theta \) based on the sample, as measured by \(\hat{V}\left(\hat{\theta}_{\text{MLE}}\right) \), should go down with \(n \).

Fisher conjectured and proved that the information and the estimated variance of the MLE in repeated sampling have the following simple inverse relationship when \(n \) is large:

\[
\hat{V}\left(\hat{\theta}_{\text{MLE}}\right) \doteq \hat{I}^{-1}\left(\hat{\theta}_{\text{MLE}}\right). \quad (16)
\]
In this case study the **Fisher information** and **repeated-sampling variance** come out

\[\hat{I}(\hat{\theta}_{\text{MLE}}) = \frac{n}{\hat{\theta}(1 - \hat{\theta})} \quad \text{and} \quad \hat{V}(\hat{\theta}_{\text{MLE}}) = \frac{\hat{\theta}(1 - \hat{\theta})}{n}, \]

(check this) which matches what you already know is **correct** in this case.

Fisher further proved that for large \(n \) (a) the MLE is approximately **unbiased**, meaning that in repeated sampling

\[E(\hat{\theta}_{\text{MLE}}) \doteq \theta, \]

and (b) the sampling distribution of the MLE is approximately **Gaussian** with mean \(\theta \) and estimated variance given by (16):

\[\hat{\theta}_{\text{MLE}} \sim \text{Gaussian} \left[\theta, \hat{I}^{-1}(\hat{\theta}_{\text{MLE}}) \right]. \]

Thus for large \(n \) an **approximate 95% confidence interval** for \(\theta \) is given by

\[\hat{\theta}_{\text{MLE}} \pm 1.96 \sqrt{\hat{I}^{-1}(\hat{\theta}_{\text{MLE}})}. \]
Fisher Information Computation

You can **differentiate** to compute the Fisher information Yourself in the AMI mortality case study, or You can use **Maple** to do it for You:

\[
\text{score} := (\theta, s, n) \mapsto \text{simplify} (\text{diff}(\text{ll}(\theta, s, n), \theta))
\]

\[
\text{score} := (\theta, s, n) \mapsto \text{simplify} (\text{diff}(\text{ll}(\theta, s, n), \theta))
\]

\[
\text{score}(\theta, s, n) ;
\]

\[
\frac{s - n \theta}{\theta (-1 + \theta)}
\]

\[
\text{plot} (\text{score} (\theta, 72, 400), \theta = 0.12 .. 0.25);
\]
Fisher Information Computation (continued)

\[
\text{diff2} := (\theta, s, n) \rightarrow \text{simplify}(\text{diff}(\text{score}(\theta, s, n), \theta));
\]

\[
diff2 := (\theta, s, n) \rightarrow \text{simplify}(\text{diff}(\text{score}(\theta, s, n), \theta))
\]

\[
\text{information} := (s, n) \rightarrow \text{simplify}(\text{eval}(-\text{diff2}(\theta, s, n), \theta = s / n));
\]

\[
\text{information}(s, n);
\]
> variance := (s, n) -> 1 / information(s, n);

\[
\text{variance} := (s, n) \rightarrow \frac{1}{\text{information}(s, n)}
\]

> variance(s, n);

\[
\frac{s (-n + s)}{3 n}
\]

This expression can be further simplified to yield

\[
\hat{V}(\hat{\theta}_{\text{MLE}}) = \frac{s}{n} \left(1 - \frac{s}{n}\right) = \frac{\hat{\theta}(1 - \hat{\theta})}{n}, \tag{20}
\]

which coincides with (17).
Repeated-Sampling Asymptotic Optimality of MLE

In the above expression for **Fisher information** in this problem,

\[
\hat{I}(\hat{\theta}_{\text{MLE}}) = \frac{n}{\hat{\theta}(1 - \hat{\theta})},
\]

as \(n \) increases, \(\hat{\theta}(1 - \hat{\theta}) \) will tend to the constant \(\theta(1 - \theta) \) (this is well-defined because we’ve assumed that \(0 < \theta < 1 \), since \(\theta = 0 \) and \(1 \) are probabilistically uninteresting), which means that information about \(\theta \) on the basis of \((y_1, \ldots, y_n) \) in the IID Bernoulli model increases at a rate proportional to \(n \) as the sample size grows.

This is generally true of the MLE (i.e., in regular parametric problems):

\[
\hat{I}(\hat{\theta}_{\text{MLE}}) = O(n) \quad \text{and} \quad \hat{V}(\hat{\theta}_{\text{MLE}}) = O(n^{-1}), \quad (21)
\]

as \(n \to \infty \), where the notation \(a_n = O(b_n) \) (as usual) means that the ratio \(\frac{a_n}{b_n} \) is bounded as \(n \) grows.

Thus uncertainty about \(\theta \) on the basis of the MLE goes down like \(\frac{c_{\text{MLE}}}{n} \) on the variance scale with more and more data (in fact Fisher showed that \(c_{\text{MLE}} \) achieves the lowest possible value: the MLE is **efficient**).
Bayesian Modeling

As a Bayesian in this situation, my job is to quantify my uncertainty about the 400 binary observables I’ll get to see starting in 2006, i.e., my initial modeling task is predictive rather than inferential.

There is no samples-and-populations story in this approach, but probability and random variables arise in a different way: quantifying my uncertainty (for the purpose of betting with someone about some aspect of the 1s and 0s, say) requires eliciting from myself a joint predictive distribution that accurately captures my judgments about what I’ll see:

\[P_{B:me}(Y_1 = y_1, \ldots, Y_n = y_n) \]

Notice that in the frequentist approach the random variables describe the process of observing a repeatable event (the “random sampling” appealed to here), whereas in the Bayesian approach you use random variables to quantify my uncertainty about observables you haven’t seen yet.

I’ll argue later that the concept of probabilistic accuracy has two components: You want your uncertainty assessments to be both internally and externally consistent, which corresponds to the Bayesian and frequentist ideas of coherence/logical consistency and calibration, respectively.
2.3 Exchangeability as a Bayesian concept parallel to frequentist independence

Eliciting a 400-dimensional distribution doesn’t sound easy; major simplification is evidently needed.

In this case, and many others, this is provided by exchangeability considerations.

If (as in the frequentist approach) You have no relevant information that distinguishes one AMI patient from another, Your uncertainty about the 400 1s and 0s is symmetric, in the sense that a random permutation of the order in which the 1s and 0s were labeled from 1 to 400 would leave Your uncertainty about them unchanged.

de Finetti (1930, 1964) called random variables with this property **exchangeable**:

\[
\{Y_i, i = 1, \ldots, n\} \text{ are exchangeable if the distributions of } (Y_1, \ldots, Y_n) \text{ and } (Y_{\pi(1)}, \ldots, Y_{\pi(n)}) \text{ are the same for all permutations } (\pi(1), \ldots, \pi(n)).
\]
NB Exchangeability and IID are not the same: IID implies exchangeability, and exchangeable Y_i do have identical marginal distributions, but they’re not independent (if You’re expecting a priori about 15% 1s, say (that’s the 30-day death rate for AMI with average-quality care), the knowledge that in the first 50 outcomes at the DH 20 of them were deaths would certainly change Your prediction of the 51st).

de Finetti also defined partial or conditional exchangeability (e.g., Draper et al., 1993): if, e.g., the gender X of the AMI patients were available, and if there were evidence from the medical literature that 1s tended to be noticeably more likely for men than women, then You would probably want to assume conditional exchangeability of the Y_i given X (meaning that the male and female 1s and 0s, viewed as separate collections of random variables, are each unconditionally exchangeable).

This is related to Fisher’s (1956) idea of recognizable subpopulations.

The judgment of exchangeability still seems to leave the joint distribution of the Y_i quite imprecisely specified.
de Finetti’s Theorem For Binary Outcomes

After defining the concept of exchangeability, however, de Finetti went on to prove a **remarkable result**: if You’re willing to regard the \(\{Y_i, i = 1, \ldots, n\} \) as part (for instance, the beginning) of an **infinite** exchangeable sequence of 1s and 0s (meaning that every finite subsequence is exchangeable), then there’s a simple way to characterize Your joint predictive distribution, if it’s to be **coherent** (e.g., de Finetti, 1975; Bernardo and Smith, 1994).

(Finite versions of the theorem have since been proven, which say that the longer the exchangeable sequence into which You’re willing to embed \(\{Y_i, i = 1, \ldots, n\} \), the harder it becomes to achieve coherence/logical consistency with any probability specification that’s far removed from the one below.)

de Finetti’s Representation Theorem. If You’re willing to regard \((Y_1, \ldots, Y_n)\) as the first \(n \) terms in an infinitely exchangeable binary sequence \((Y_1, Y_2, \ldots)\); then, with \(\bar{Y}_n = \frac{1}{n} \sum_{i=1}^{n} Y_i \),

- \(\theta = \lim_{n \to \infty} \bar{Y}_n \) must exist, and the **marginal distribution** (given \(\theta \)) for each of the \(Y_i \) must be
 \[
 P(Y_i = y_i | \theta) = \text{Bernoulli}(y_i | \theta) = \theta^{y_i} (1 - \theta)^{1-y_i},
 \]
where P is my joint probability distribution on (Y_1, Y_2, \ldots);

- $H(t) = \lim_{n \to \infty} P(\bar{Y}_n \leq t)$, the limiting cumulative distribution function (CDF) of the \bar{Y}_n values, must also exist for all t and must be a valid CDF, and

- $P(Y_1, \ldots, Y_n)$ can be expressed as

$$P(Y_1 = y_1, \ldots, Y_n = y_n) = \int_0^1 \prod_{i=1}^n \theta^{y_i} (1 - \theta)^{1-y_i} dH(\theta). \quad (22)$$

When (as will essentially always be the case in realistic applications) my joint distribution P is sufficiently regular that H possesses a density (with respect to Lebesgue measure), $dH(\theta) = p(\theta) d\theta$, (22) can be written in a more accessible way as

$$P(Y_1 = y_1, \ldots, Y_n = y_n) = \int_0^1 \theta^s (1 - \theta)^{n-s} p(\theta) d\theta, \quad (23)$$

where $s = \sum_{i=1}^n y_i = n \bar{y}_n$.

Important digression 1. Some awkwardness arose above in the frequentist approach to modeling the AMI mortality data, because it was not clear what population P the data could be regarded as like a random sample from.

This awkwardness also arises in Bayesian modeling: even though in practice you’re only going to observe (y_1, \ldots, y_n), de Finetti’s representation theorem requires you to extend your judgment of finite exchangeability to the countably-infinite collective (y_1, y_2, \ldots),

\rightarrow and this is precisely like viewing (y_1, \ldots, y_n) as a random sample from $P = (y_1, y_2, \ldots)$.

The key point is that the difficulty arising from lack of clarity about the scope of valid generalizability from a given set of observational data is a fundamental scientific problem that emerges whenever purely observational data are viewed through an inferential or predictive lens, whether the statistical methods you use are frequentist or Bayesian.
The Law of Total Probability

Important digression 2. It’s a general fact about true-false propositions \(D \) and \(A \) that

\[
P(D) = P(D \text{ and } A) + P[D \text{ and } (\text{not } A)]
\]

\[
= P(A) P(D|A) + P(\text{not } A) P(D|\text{not } A).
\]

This is a special case of the Law of Total Probability (LTP).

\(A \) and (not \(A \)) divide, or partition, the collection of all possible outcomes into two non-overlapping (mutually exclusive) and exhaustive possibilities.

Let \(A_1, \ldots, A_k \) be any finite partition, i.e., \(P(A_i \text{ and } A_j) = 0 \) (mutually exclusive) and \(\sum_{i=1}^{k} P(A_i) = 1 \) (exhaustive); then a more general version of the LTP gives that

\[
P(D) = P(D \text{ and } A_1) + \ldots + P(D \text{ and } A_k)
\]

\[
= P(A_1) P(D|A_1) + \ldots + P(A_k) P(D|A_k)
\]

\[
= \sum_{i=1}^{k} P(A_i) P(D|A_i).
\]
Hierarchical (Mixture) Modeling

There is a continuous version of the LTP: by analogy with (25), if X and Y are real-valued random variables

$$p(y) = \int_{-\infty}^{\infty} p(x) p(y|x) \, dx.$$ \hfill (26)

$p(x)$ in this expression can be thought of as a mixing distribution.

Intuitively (26) says that the overall probability behavior $p(y)$ of Y is a mixture (weighted average) of the conditional behavior $p(y|x)$ of Y given X, weighted by the behavior $p(x)$ of X.

Another way to put this is to say that you have a choice: you can either model the random behavior of Y directly, through $p(y)$, or hierarchically, by first modeling the random behavior of X, through $p(x)$, and then modeling the conditional behavior of Y given X, through $p(y|x)$.

Notice that X and Y are completely general in this discussion — in other words, given any quantity Y that you want to model stochastically, you’re free to choose any X (upon which Y depends) and model Y hierarchically given X instead, if that’s easier.
Hierarchical (Mixture) Modeling (continued)

Symbolically

\[
Y \leftrightarrow \left\{ \begin{array}{c}
X \\
Y|X
\end{array} \right\}.
\] (27)

The reason for bringing all of this up now is that (23) can be interpreted as follows, with \(\theta \) playing the role of \(x \):

\[
p(y_1, \ldots, y_n) = \int_0^1 p(y_1, \ldots, y_n|\theta) p(\theta) d\theta
\]

\[
= \int_0^1 \theta^s (1 - \theta)^{n-s} p(\theta) d\theta.
\] (28)

(28) implies that in any coherent/logically consistent expression of uncertainty about exchangeable binary quantities \(Y_1, \ldots, Y_n \),

\[
p(y_1, \ldots, y_n|\theta) = \theta^s (1 - \theta)^{n-s}.
\] (29)

But (a) the left side of (29), interpreted as a function of \(\theta \) for fixed \(y = (y_1, \ldots, y_n) \), is recognizable as the likelihood function for \(\theta \) given \(y \),
The Simplest Mixture (Hierarchical) Model

(b) the right side of (29) is recognizable as the likelihood function for \(\theta \) in IID Bernoulli sampling, and (c) (29) says that these must be the same.

Thus, to summarize de Finetti’s Theorem intuitively, the assumption of exchangeability in my uncertainty about binary observables \(Y_1, \ldots, Y_n \) amounts to behaving as if

- there is a quantity called \(\theta \), interpretable as either the long-run relative frequency of 1s or the marginal probability that any of the \(Y_i \) is 1,
- You need to treat \(\theta \) as a random quantity with density \(p(\theta) \), and
- conditional on this \(\theta \) the \(Y_i \) are IID Bernoulli(\(\theta \)).

In yet other words, for a Bayesian whose uncertainty about binary \(Y_i \) is exchangeable, the model may effectively be taken to have the simple mixture or hierarchical representation

\[
\begin{aligned}
&\left\{ \begin{array}{c}
\theta \\
(Y_i|\theta)
\end{array} \right. &\sim & p(\theta) \\
&\underrightarrow{\text{IID}} &\sim & \text{Bernoulli}(\theta), \ i = 1, \ldots, n
\end{aligned}
\]

\((30) \)
Exchangeability and Conditional Independence

This is the link between frequentist and Bayesian modeling of binary outcomes: exchangeability implies that You should behave like a frequentist vis à vis the likelihood function (taking the Y_i to be IID Bernoulli(θ)), but a frequentist who treats θ as a random variable with a mixing distribution $p(\theta)$.

NB This is the first example of a general fact:

$$Y_i \text{ exchangeable} \iff \begin{cases} Y_i \text{ conditionally IID} \\ \text{given one or more parameters} \end{cases}.$$ \hspace{1cm} (31)

So exchangeability is a special kind of conditional independence: binary exchangeable y_i are not independent, but they become conditionally independent given θ.

(30) is an example of the simplest kind of hierarchical model (HM): a model at the top level for the underlying death rate θ, and then a model below that for the binary mortality indicators Y_i conditional on θ (this is a basic instance of (27): it’s not easy to model the predictive distribution for (Y_1, \ldots, Y_n) directly, but it becomes a lot easier when θ is introduced at the top level of a 2–level hierarchy).
To emphasize an important point mentioned above, to make sense of this in the Bayesian approach you have to treat θ as a random variable, even though logically it’s a fixed unknown constant.

This is the main conceptual difference between the Bayesian and frequentist approaches: as a Bayesian you use the machinery of random variables to express your uncertainty about unknown quantities.

<table>
<thead>
<tr>
<th>Approach</th>
<th>Fixed</th>
<th>Random</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequentist</td>
<td>θ</td>
<td>Y</td>
</tr>
<tr>
<td>Bayesian</td>
<td>y</td>
<td>θ</td>
</tr>
</tbody>
</table>

What’s the meaning of the mixing distribution $p(\theta)$?

$p(\theta)$ doesn’t involve $y = (y_1, \ldots, y_n)$, so it must represent my information about θ external to the data set y — as noted in Part 1, it has become traditional to call it my prior distribution for θ (I’ll address how you might go about specifying this distribution below).
Q: If $p(\theta)$ represents my information external to θ, what represents this information after y has been observed?

A: It has to be $p(\theta|y)$, the conditional distribution for θ given how y came out.

It’s conventional (again appealing to terms involving time) to call this the **posterior distribution** for θ given y.

Q: How do You get from $p(\theta)$ to $p(\theta|y)$, i.e., how do You update Your information about θ in light of the data?

A: **Bayes’s Theorem** for continuous quantities:

$$p(\theta|y) = \frac{p(\theta) p(y|\theta)}{p(y)}.$$ \hspace{1cm} (32)

This requires some interpreting. As a Bayesian You’re **conditioning on the data**, i.e., You’re thinking of the left-hand side of (32) as a function of θ for fixed y, so that must also be true of the right-hand side; thus

(a) $p(y)$ is just a constant — in fact, You can think of it as the **normalizing constant**, put into the equation to make the product $p(\theta) p(y|\theta)$ integrate to 1;
and (b) $p(y|\theta)$ may look like the usual frequentist sampling distribution for y given θ (Bernoulli, in this case), but You have to think of it as a function of θ for fixed y.

We’ve already encountered this idea (page 17): $l(\theta|y) = c p(y|\theta)$ is the likelihood function.

So Bayes’s Theorem becomes

$$p(\theta|y) = c p(\theta) \cdot l(\theta|y)$$

You can also readily construct predictive distributions for the y_i before they’re observed, or for future y_i once some of them are known.

For example, by the LTP, the posterior predictive distribution for (y_{m+1}, \ldots, y_n) given (y_1, \ldots, y_m) is
Predictive Distributions (continued)

\[
p(y_{m+1}, \ldots, y_n | y_1, \ldots, y_m) = \\
\int_0^1 p(y_{m+1}, \ldots, y_n | \theta, y_1, \ldots, y_m) p(\theta | y_1, \ldots, y_m) d\theta.
\]

Consider \(p(y_{m+1}, \ldots, y_n | \theta, y_1, \ldots, y_m) \): if You knew \(\theta \), the information \(y_1, \ldots, y_m \) about how the first \(m \) of the \(y_i \) came out would be irrelevant (imagine predicting the results of IID coin-tossing: if You somehow knew that the coin was perfectly fair, i.e., that \(\theta = 0.5 \), then getting (say) 6 heads in the first 10 tosses would be useless to You in quantifying the likely behavior of the next (say) 20 tosses — You’d just use the known true value of \(\theta \)).

Thus \(p(y_{m+1}, \ldots, y_n | \theta, y_1, \ldots, y_m) \) is just \(p(y_{m+1}, \ldots, y_n | \theta) \), which in turn is just the sampling distribution under IID \(\text{B}(\theta) \) sampling for the binary observables \(y_{m+1}, \ldots, y_n \), namely \(\prod_{i=m+1}^n \theta^{y_i} (1 - \theta)^{1-y_i} \).

And finally \(p(\theta | y_1, \ldots, y_m) \) is recognizable as just the posterior distribution for \(\theta \) given the first \(m \) of the binary outcomes.

Putting this all together gives
2.5 Inference and Prediction; Coherence and Calibration

\[p(y_{m+1}, \ldots, y_n|y_1, \ldots, y_m) = \]
\[= \int_0^1 \prod_{i=m+1}^n \theta^{y_i} (1 - \theta)^{1-y_i} p(\theta|y_1, \ldots, y_m) \, d\theta \]

(we can’t compute (35) yet because \(p(\theta|y_1, \ldots, y_m) \) depends on \(p(\theta) \), which we haven’t specified so far).

This also brings up a key difference between a parameter like \(\theta \) on the one hand and the \(Y_i \), before You’ve observed any data, on the other: parameters are inherently unobservable.

This makes it harder to evaluate the quality of my uncertainty assessments about \(\theta \) than to do so about the observable \(y_i \): to see how well You’re doing in predicting observables You can just compare Your predictive distributions for them with how they actually turn out, but of course this isn’t possible with parameters like \(\theta \) that You’ll never actually see.

The de Finetti approach to modeling emphasizes the prediction of observables as a valuable adjunct to inference about unobservable parameters, for at least two reasons:
Key scientific questions are often predictive in nature: e.g., rather than asking “Is drug A better than B (on average across many patients) for lowering blood pressure?” (inference) the ultimate question is “How much more will drug A lower this patient’s blood pressure than drug B?” (prediction); and

Good diagnostic checking is predictive: An inference about an unobservable parameter can never be directly verified, but often You can reasonably conclude that inferences about the parameters of a model that produces poor predictions of observables are also suspect.

With the predictive approach parameters diminish in importance, especially those that have no physical meaning — such parameters (unlike \(\theta \) above) are just place-holders for a particular kind of uncertainty on my way to making good predictions.

It’s arguable (e.g., Draper, 1995) that the discipline of statistics, and particularly its applications in the social sciences, would be improved by a greater emphasis on predictive feedback.
Where Does the Prior Come From?

This is not to say that parametric thinking should be abolished.

As the calculations on the previous pages emphasized, parameters play an important simplifying role in forming modeling judgments: the single strongest simplifier of a joint distribution is independence of its components, and whereas, e.g., in the mortality example the Y_i are not themselves independent, they become so conditional on θ.

de Finetti’s Theorem for 0–1 outcomes says informally that if You’re trying to make coherent/logically consistent probability judgments about a series of 1s and 0s that You judge exchangeable, You may as well behave like a frequentist — IID Bernoulli(θ) — with a prior distribution $p(\theta)$; but where does the prior come from?

[NB] Coherence/logical consistency doesn’t help in answering this question — it turns out that any prior $p(\theta)$ could be part of somebody’s coherent/logically consistent probability judgments.

Some people regard the need to answer this question in the Bayesian approach as a drawback, but it seems to me to be a positive feature, as follows.
Predictive Calibration

From Bayes’s Theorem the prior is supposed to be a summary of what You know (and don’t know) about \(\theta \) external to the data set \((y_1, \ldots, y_n)\): from previous datasets of which You’re aware, from the relevant literature, from expert opinion, ... from all “good” source(s), if any exist.

Such information is almost always present, and should presumably be used when available; the issue is how to do so “well.”

The goal is evidently to choose a prior that You’ll retrospectively be proud of, in the sense that Your predictive distributions for the observables (a) are well-centered near the actual values and (b) have uncertainty bands that correspond well to the realized discrepancies between actual and predicted values; this is a form of calibration of Your probability assessments.

There is no guaranteed way to do this, just as there is no guaranteed way to arrive at a “good” frequentist model (see “Where does the likelihood come from?” below).

Some general comments on arriving at a “good” prior:
Choosing a “Good” Prior

- There is a growing literature on methodology for *elicitation* of prior information (e.g., Kadane et al., 1980; Craig et al., 1997; Kadane and Wolfson, 1997; O’Hagan, 1997), which brings together ideas from statistics and perceptual psychology (e.g., people turn out to be better at estimating *percentiles* of a distribution than they are at estimating *standard deviations* (SDs)).

- Bayes’s Theorem on the **log scale** says (apart from the normalizing constant)

\[
\log(\text{posterior}) = \log(\text{prior}) + \log(\text{likelihood}),
\]

i.e., (posterior information) = (data information) + (prior information).

This means that **close attention should be paid to the information content of the prior** by, e.g., density-normalizing the likelihood and plotting it on the same scale as the prior: it’s possible for small n for the **prior to swamp the data**, and in general You shouldn’t let this happen without a good reason for doing so.

Comfort can also be taken from the other side of this coin: with large n (**in**...
many situations, at least) the **data will swamp the prior**, and specification errors become less important.

- When You notice You’re quite uncertain about how to specify the prior, You can try **sensitivity** or **pre-posterior analysis**: exploring the mapping from prior to posterior, before the data are gathered, by (a) generating some possible values for the observables, (b) writing down several plausible forms for the prior, and (c) carrying these forward to posterior distributions — if the resulting distributions are similar (i.e., if “all reasonable roads lead to Rome”), You’ve uncovered a useful form of stability in Your results; if not You can try to capture the prior uncertainty **hierarchically**, by, e.g., adding another layer to a model like (30) above.

- Calibration can be estimated by a form of **cross-validation**: with a given prior You can (a) repeatedly divide the data at random into modeling and validation subsets, (b) update to posterior predictive distributions based on the modeling data, and (c) compare these distributions with the actual values in the validation data.
Conjugate Analysis

Note that calibration is inherently frequentist in spirit (e.g., “What percentage of the time do my 95% predictive intervals include the actual value?”).

This leads to a useful synthesis of Bayesian and frequentist thinking:

Coherence/logical consistency keeps me internally honest; calibration keeps me in good contact with the world.

2.6 Conjugate analysis; comparison with frequentist modeling

Example: Prior specification in the AMI mortality case study. Let’s say

(a) I know (from the literature) that the 30-day AMI mortality rate given average care and average sickness at admission in the U.S. is about 15%,

(b) I know little about care or patient sickness at the DH, but

(c) I’d be somewhat surprised if the “underlying rate” at the DH was much less than 5% or more than 30% (note the asymmetry).

To quantify these judgments I seek a flexible family of densities on (0, 1),
The Beta Family of Densities on \((0, 1)\)

one of whose members has mean \(0.15\) and (say) 95% central interval \((0.05, 0.30)\).

A convenient family for this purpose is the Beta distributions,

\[
\text{Beta}(\theta | \alpha, \beta) = c \theta^{\alpha-1} (1 - \theta)^{\beta-1},
\]

(37)
defined for \((\alpha > 0, \beta > 0)\) and for \(0 < \theta < 1\).

We can use Maple to evaluate the normalizing constant \(c\).

```maple
sauternes 189> maple
\|\^/\| Maple 9.5 (SUN SPARC SOLARIS)
._|\|  |/|_. Copyright (c) Maplesoft, Waterloo Maple Inc. 2004
\ MAPLE / All rights reserved. Maple is a trademark of
<___ ___> Waterloo Maple Inc.
  | Type ? for help.

> assume( alpha > 0, beta > 0, theta > 0, theta < 1 );
> p1 := ( theta, alpha, beta ) -> theta^( alpha - 1 ) *
    ( 1 - theta )^( beta - 1 );
```
The Beta Distribution

\[p_1 := (\theta, \alpha, \beta) \rightarrow \theta (1 - \theta) \]

\[\int_0^1 p_1(\theta, \alpha, \beta) \, d\theta = \text{Beta}(\alpha, \beta) \]

\[\text{Beta}(\alpha, \beta) \]

\[\text{Beta}(\theta, \alpha, \beta) \rightarrow \theta (1 - \theta) \]

\[\int_0^1 \text{p1}(\theta, \alpha, \beta) \, d\theta = \text{Beta}(\alpha, \beta) \]

\[\text{Beta}(\alpha, \beta) \]

\[\text{Beta} \rightarrow \text{The Beta function} \]

\[\text{Calling Sequence:} \]
\[\text{Beta}(x, y) \]

\[\text{Parameters:} \]
\[x \rightarrow \text{an expression} \]
\[y \rightarrow \text{an expression} \]

\[\text{Description:} \]
\[- \text{The Beta function is defined as follows:} \]
\[\text{Beta}(x, y) = \frac{\text{GAMMA}(x) \times \text{GAMMA}(y)}{\text{GAMMA}(x+y)} \]

\[\text{GAMMA} \rightarrow \text{The Gamma and Incomplete Gamma Functions} \]
\[\text{lnGAMMA} \rightarrow \text{The log-Gamma function} \]
The Beta Distribution (continued)

Calling Sequence:

\begin{align*}
\text{GAMMA}(z) \\
\text{GAMMA}(a, z) \\
\ln\text{GAMMA}(z)
\end{align*}

Parameters:

\begin{align*}
z - \text{an expression} \\
a - \text{an expression}
\end{align*}

Description:

- The Gamma function is defined for \(\Re(z) > 0 \) by
 \[\text{GAMMA}(z) = \int \exp(-t) \cdot t^{z-1}, t = 0 \ldots \infty \]
 and is extended to the rest of the complex plane,
 less the non-positive integers, by analytic continuation.

 \text{GAMMA} has a simple pole at each of the points \(z = 0, -1, -2, \ldots \).

- For positive real arguments \(z \), the \(\ln\text{GAMMA} \) function is defined by:
 \[\ln\text{GAMMA}(z) = \ln(\text{GAMMA}(z)) \]

\begin{verbatim}
> plotsetup(x11);
> plot(GAMMA(x), x = 0 .. 5, color = black);
\end{verbatim}
It turns out that $\Gamma(1) = 1, \Gamma(2) = 1, \Gamma(3) = 2, \Gamma(4) = 6$, and $\Gamma(5) = 24$ — the pattern here is that

$$\Gamma(n) = (n - 1)! \quad \text{for integer } n. \quad (38)$$

Thus the Gamma function is a kind of continuous generalization of the factorial function.

What all of this has shown is that the normalizing constant in the Beta distribution is

$$c = \left[\int_0^1 \theta^{\alpha-1} (1 - \theta)^{\beta-1} \, d\theta \right]^{-1} = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha) \Gamma(\beta)} \quad (39)$$
so that the full definition of the **Beta distribution** is

\[
\text{Beta}(\theta|\alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha) \Gamma(\beta)} \theta^{\alpha-1} (1 - \theta)^{\beta-1},
\]

(40)

for ($\alpha > 0$, $\beta > 0$) and for $0 < \theta < 1$.

The Beta family is **convenient** for two reasons: **(1)** It exhibits a wide variety of **distributional shapes**:
Conjugate Analysis

(2) As we saw above, the likelihood in this problem comes from the Bernoulli sampling distribution for the Y_i,

$$p(y_1, \ldots, y_n | \theta) = l(\theta | y) = \theta^s (1 - \theta)^{n-s},$$

where s is the sum of the y_i.

Now Bayes’s Theorem says that to get the posterior distribution $p(\theta | y)$ You multiply the prior $p(\theta)$ and the likelihood — in this case $\theta^s (1 - \theta)^{n-s}$ — and renormalize so that the product integrates to 1.

Rev. Bayes himself noticed back in the 1750s that if the prior is taken to be of the form $c \theta^u (1 - \theta)^v$, the product of the prior and the likelihood will also be of this form, which makes the computations more straightforward.

The Beta family is said to be conjugate to the Bernoulli/Binomial likelihood.

Conjugacy of a family of prior distributions to a given likelihood is a bit hard to define precisely, but the basic idea — given a particular likelihood function — is to try to find a family of prior distributions so that the product of members of this family with the likelihood function will also be in the family.
Conjugate analysis — finding conjugate priors for standard likelihoods and restricting attention to them on tractability grounds — is one of only two fairly general methods for getting closed-form answers in the Bayesian approach (the other is asymptotic analysis; see, e.g., Bernardo and Smith, 1994).

Suppose I restrict attention (for now) to members of the Beta family in trying to specify a prior distribution for θ in the AMI mortality example.

I want a member of this family that has mean 0.15 and 95% central interval (0.05, 0.30).

\[
> \text{mean} := \text{integrate}(\text{theta} * \text{p(theta, alpha, beta), theta = 0 .. 1 });
\]

\[
\text{alpha}^\sim
\]

\[
\text{mean} := \frac{\text{alpha}^\sim}{\text{alpha}^\sim + \text{beta}^\sim}
\]

\[
> \text{variance} := \text{simplify}(\text{integrate((theta - alpha / (alpha + beta))^2 * p(theta, alpha, beta), theta = 0 .. 1) });
\]
Conjugate Analysis (continued)

\[
\text{alpha} \sim \text{beta}
\]

\[
\text{variance} := \frac{2}{(\text{alpha} + \text{beta}) (\text{alpha} + \text{beta} + 1)}
\]

As Maple has demonstrated, if \(\theta \sim \text{Beta}(\alpha, \beta) \)

\[
E(\theta) = \frac{\alpha}{\alpha + \beta} \quad \text{and} \quad V(\theta) = \frac{\alpha \beta}{(\alpha + \beta)^2 (\alpha + \beta + 1)}.
\] (42)

\[> \text{solve(mean = 15 / 100, beta);}
\]

\[17/3 \text{ alpha} \sim
\]

\[> \text{solve(integrate(p(theta, alpha, 17 * alpha / 3),}
\]

\[\text{theta = 0.05 .. 0.30) = 0.95, alpha);}
\]

bytes used=3005456, alloc=1834672, time=0.82
bytes used=4006628, alloc=2293340, time=1.18
bytes used=5007408, alloc=2489912, time=1.58
>
Conjugate Analysis (continued)

Maple can’t solve this equation symbolically (and neither could you), but it can do so numerically; note how easy this is to do in Maple, by replacing solve with fsolve:

\[
> \text{fsolve}\left(\text{integrate}\left(p(\theta, \alpha, 17 * \alpha / 3), \\
\quad \theta = 0.05 .. 0.30 \right) = 0.95, \alpha \right);
\]

bytes used=7083468, alloc=2686484, time=2.50

(output suppressed)

bytes used=27099104, alloc=3538296, time=11.99

\[
4.506062414
\]

\[
> 17 * 4.506062414 / 3;
\]

\[
25.53435368
\]
Thus the **Beta distribution** with \((\alpha, \beta) = (4.5, 25.5)\) meets my two prior specifications; it can readily be plotted in Maple or R (my choice here):

![Graph of Beta distribution](image)

This prior distribution looks just like I want it to: it has a **long right-hand tail** and is **quite spread out**: the prior SD with this choice of \((\alpha, \beta)\) is

\[
\sqrt{\frac{(4.5)(25.5)}{(4.5+25.5)^2(4.5+25.5+1)}} \approx 0.064, \text{ i.e., my prior says that I think the underlying AMI mortality rate at the DH is around 15\%, give or take about 6 or 7\%}.
\]
Hierarchical Model Expansion

In the usual jargon α and β are called hyperparameters since they’re parameters of the prior distribution.

Written hierarchically the model we’ve arrived at is

\[
(\alpha, \beta) = (4.5, 25.5) \quad \text{(hyperparameters)}
\]

\[
(\theta | \alpha, \beta) \sim \text{Beta}(\alpha, \beta) \quad \text{(prior)}
\]

\[
(Y_1, \ldots, Y_n | \theta) \overset{\text{HD}}{\sim} \text{Bernoulli}(\theta) \quad \text{(likelihood)}
\]

(43) suggests what to do if You’re not sure about the specifications that led to $(\alpha, \beta) = (4.5, 25.5)$: hierarchically expand the model by placing a distribution on (α, β) centered at $(4.5, 25.5)$.

This is an important Bayesian modeling tool: if the model is inadequate in some way, expand it hierarchically in directions suggested by the nature of its inadequacy (I’ll give more examples of this later).

Q: Doesn’t this set up the possibility of an infinite regress, i.e., how do You know when to stop adding layers to the hierarchy?
Conjugate Updating

A: (1) In practice people stop when they run out of (time, money), after having made sure that the final model passes diagnostic checks; and comfort may be taken from the empirical fact that (2) there tends to be a kind of diminishing returns principle: the farther a given layer in the hierarchy is from the likelihood (data) layer, the less it tends to affect the answer.

The conjugacy of the prior leads to a simple closed form for the posterior here: with y as the vector of observed $Y_i, i = 1, \ldots, n$ and s as the sum of the y_i (a sufficient statistic for θ, as noted above, with the Bernoulli likelihood),

$$p(\theta|y, \alpha, \beta) = c \cdot l(\theta|y) \cdot p(\theta|\alpha, \beta)$$

$$= c \cdot \theta^s \cdot (1 - \theta)^{n-s} \cdot \theta^{\alpha-1} \cdot (1 - \theta)^{\beta-1}$$

$$= c \cdot \theta^{(s+\alpha)-1} \cdot (1 - \theta)^{(n-s+\beta)-1}$$

(44)

i.e., the posterior for θ is $\text{Beta}(\alpha + s, \beta + n - s)$.

This gives the hyperparameters a useful interpretation in terms of effective information content of the prior: it’s as if the data ($\text{Beta}(s+1, n-s+1)$) were worth $(s+1) + (n-s+1) = n$ observations and the prior ($\text{Beta}(\alpha, \beta)$) were worth $(\alpha + \beta)$ observations.
The Prior Data Set

This can be used to judge whether the prior is more informative than intended — here it’s equivalent to $(4.5 + 25.5) = 30$ binary observables with a mean of 0.15.

In Bayesian inference the prior information can always be thought of as equivalent to a prior data set, in the sense that if

(a) I were to merge the prior data set with the sample data set and do a likelihood analysis on the merged data, and

(b) You were to do a Bayesian analysis with the same prior information and likelihood,

we would get the same answers.

Conjugate analysis has the advantage that the prior sample size can be explicitly worked out: here, for example, the prior data set in effect consists of $\alpha = 4.5$ 1s and $\beta = 25.5$ 0s, with prior sample size $n_0 = (\alpha + \beta) \div 30$.

Even with non-conjugate Bayesian analyses, thinking of the prior information as equivalent to a data set is a valuable heuristic.
Prior-To-Posterior Updating

(44) can be summarized by saying

\[
\begin{cases}
\theta \sim \text{Beta}(\alpha, \beta) \\
(Y_i|\theta) \overset{\text{iid}}{\sim} \text{Bernoulli}(\theta), \\
i = 1, \ldots, n
\end{cases} \rightarrow (\theta|y) \sim \text{Beta}(\alpha + s, \beta + n - s), \quad (45)
\]

where \(y = (y_1, \ldots, y_n)\) and \(s = \sum_{i=1}^{n} y_i\).

Suppose the \(n = 400\) DH patients include \(s = 72\) deaths \((\frac{s}{n} = 0.18)\).
Then the prior is Beta(4.5, 25.5), the likelihood is Beta(73, 329), the posterior for \(\theta \) is Beta(76.5, 353.5), and the three densities plotted on the same graph are given above.

In this case the posterior and the likelihood nearly coincide, because the data information outweighs the prior information by \(\frac{400}{30} = \) more than 13 to 1.

The mean of a Beta(\(\alpha, \beta \)) distribution is \(\frac{\alpha}{\alpha + \beta} \); with this in mind the posterior mean has an intuitive expression as a weighted average of the prior mean and data mean, with weights determined by the effective sample size of the prior, \((\alpha + \beta) \), and the data sample size \(n \):

\[
\frac{\alpha + s}{\alpha + \beta + n} = \left(\frac{\alpha + \beta}{\alpha + \beta + n} \right) \left(\frac{\alpha}{\alpha + \beta} \right) + \left(\frac{n}{\alpha + \beta + n} \right) \left(\frac{s}{n} \right)
\]

\[
\text{posterior mean} = \left(\begin{array}{c} \text{prior weight} \\ \text{mean} \end{array} \right) \left(\begin{array}{c} \text{prior mean} \\ \text{data weight} \end{array} \right) \left(\begin{array}{c} \text{data mean} \\ \text{mean} \end{array} \right)
\]

\[
.178 = (.070) (.15) + (.93) (.18)
\]
Comparison With Frequentist Modeling

Another way to put this is that the data mean, \(\bar{y} = \frac{s}{n} = \frac{72}{400} = .18 \), has been **shrunk** towards the prior mean .15 by (in this case) a modest amount: the posterior mean is about .178, and the **shrinkage factor** is \(\frac{30}{30+400} \) = about .07.

Comparison with frequentist modeling. To analyze these data as a frequentist You would appeal to the **Central Limit Theorem**: \(n = 400 \) is big enough so that the repeated-sampling distribution of \(\bar{Y} \) is approximately \(N \left[\theta, \frac{\theta(1-\theta)}{n} \right] \), so (as we saw earlier) an approximate 95% **confidence interval** for \(\theta \) would be centered at \(\hat{\theta} = \bar{y} = 0.18 \), with an estimated standard error of \(\sqrt{\frac{\theta(1-\theta)}{n}} = 0.0192 \), and would run roughly from 0.142 to 0.218.

By contrast the posterior for \(\theta \) is also approximately **Gaussian** (see the graph on the next page), with a mean of 0.178 and an SD of \(\sqrt{\frac{\alpha^*\beta^*}{(\alpha^*+\beta^*)^2(\alpha^*+\beta^*+1)}} = 0.0184 \), where \(\alpha^* \) and \(\beta^* \) are the parameters of the Beta posterior distribution; a 95% **central posterior interval** for \(\theta \) would then run from about 0.178 – (1.96)(0.0184) = 0.142 to 0.178 + (1.96)(0.0184) = 0.215.

The two approaches (frequentist based only on the sample, Bayesian based on the sample and the prior You’re using) give **almost the same** answers in this
case, a result that's typical of situations with fairly large \(n \) and relatively **diffuse** prior information.

Note, however, that the **interpretation** of the two analyses differs:

- In the frequentist approach \(\theta \) is **fixed but unknown** and \(\bar{Y} \) is random, with the analysis based on imagining what would happen if the hypothetical random sampling were repeated, and appealing to the fact that across these repetitions \((\bar{Y} - \theta) \sim \text{Gaussian}(0, .019^2) \); whereas
Comparison With Frequentist Modeling (continued)

- In the Bayesian approach \bar{y} is fixed at its observed value and θ is treated as random, as a means of quantifying my posterior uncertainty about it: $(\theta - \bar{y}|\bar{y}) \sim \text{Gaussian}(0, .018^2)$.

This means among other things that, while it’s not legitimate with the frequentist approach to say that $P_F(.14 \leq \theta \leq .22) \doteq .95$, which is what many users of confidence intervals would like them to mean, the corresponding statement $P_B(.14 \leq \theta \leq .22|y, \text{ diffuse prior information}) \doteq .95$ is a natural consequence of the Bayesian approach.

In the case of diffuse prior information and large n this justifies the fairly common informal practice of computing inferential summaries in a frequentist way and then interpreting them in a Bayesian way.

When non-diffuse prior information is available and You use it, Your answer will differ from a frequentist analysis based on the same likelihood.

If Your prior is retrospectively seen to have been well-calibrated You’ll get a better answer than with the frequentist approach; if poorly calibrated, a worse answer (Samaniego and Reneau, 1994):
Comparison With Frequentist Modeling (continued)

“bad” Bayesian \leq frequentist \leq “good” Bayesian

What You make of this depends on Your risk-aversion: Is it better to try to land on the right in this box, running some risk of landing on the left, or to steer a middle course?

(NB I’ll give several examples later in which a Bayesian analysis is better even with diffuse prior information: the point is that likelihood methods don’t always have good repeated-sampling properties with small samples, and the Bayesian approach can remedy this problem.)

Bernoulli prediction. The predictive distribution for future Y_i in the Bernoulli model was shown back on page 45 (equation (35)) to be

$$p(Y_{m+1} = y_{m+1}, \ldots, Y_n = y_n | y_1, \ldots, y_m) =$$

$$= \int_0^1 \prod_{i=m+1}^n \theta^{y_i} (1 - \theta)^{1-y_i} p(\theta | y_1, \ldots, y_m) \, d\theta .$$
It became clear earlier that if the prior is taken to be Beta(\(\alpha, \beta\)) the posterior \(p(\theta|y_1, \ldots, y_m)\) in this expression is Beta(\(\alpha^*, \beta^*\)), where \(\alpha^* = \alpha + s\) and \(\beta^* = \beta + (n - s)\).

As an example of an explicit calculation with (46) in this case, suppose that You’ve observed \(n\) of the \(Y_i\), obtaining data vector \(y = (y_1, \ldots, y_n)\), and You want to predict \(Y_{n+1}\).

Obviously \(p(Y_{n+1} = y_{n+1}|y)\) has to be a \textbf{Bernoulli}(\(\theta^*\)) distribution for some \(\theta^*\), and intuition says that \(\theta^*\) should just be the mean \(\frac{\alpha^*}{\alpha^*+\beta^*}\) of the posterior distribution for \(\theta\) given \(y\).

(46) in this case gives for \(p(Y_{n+1} = y_{n+1}|y)\) the expression

\[
\int_0^1 \theta^{y_{n+1}} (1-\theta)^{1-y_{n+1}} \frac{\Gamma(\alpha^* + \beta^*)}{\Gamma(\alpha^*) \Gamma(\beta^*)} \theta^{\alpha^*-1} (1-\theta)^{\beta^*-1} d\theta
\]

\[
= \frac{\Gamma(\alpha^* + \beta^*)}{\Gamma(\alpha^*) \Gamma(\beta^*)} \int_0^1 \theta^{\alpha^*+y_{n+1}-1} (1-\theta)^{(\beta^*-y_{n+1}+1)-1} d\theta, \quad (47)
\]

and a \textbf{symbolic computing package} such as \text{Maple} (or examination of the
logic leading to the normalizing constant of the Beta distribution) then yields that \(p(Y_{n+1} = y_{n+1}|y) \) is

\[
\frac{\Gamma(\alpha^* + y_{n+1})}{\Gamma(\alpha^*)} \frac{\Gamma(\beta^* - y_{n+1} + 1)}{\Gamma(\beta^*)} \frac{\Gamma(\alpha^* + \beta^*)}{\Gamma(\alpha^* + \beta^* + 1)}.
\]

(48)

Recalling that \(\frac{\Gamma(x+1)}{\Gamma(x)} = x \) for any real number \(x \) leads to simple expressions that match intuition; in the case \(y_{n+1} = 1 \), for instance, (48) becomes

\[
p(Y_{n+1} = 1|y) = \frac{\Gamma(\alpha^* + 1)}{\Gamma(\alpha^*)} \frac{\Gamma(\alpha^* + \beta^*)}{\Gamma(\alpha^* + \beta^* + 1)}
\]

\[
= \frac{\alpha^*}{\alpha^* + \beta^*}.
\]

(49)

For example, with \((\alpha, \beta) = (4.5, 25.5) \) and \(n = 400 \) with \(s = 72 \), we saw earlier that the posterior for \(\theta \) was Beta\((76.5, 353.5)\), and this posterior distribution has mean \(\frac{\alpha^*}{\alpha^* + \beta^*} = 0.178 \).

In this situation You would expect the next AMI patient who comes along to die within 30 days of admission with probability 0.178, so the predictive distribution above makes good sense.
The Binomial Distribution

It became clear above that the sum \(s = \sum_{i=1}^{n} y_i \) of the 1s and 0s is a **sufficient statistic** for \(\theta \) with the Bernoulli likelihood.

This means that if You buy into the model \((Y_i | \theta) \sim \text{Bernoulli}(\theta)\), **You don’t care** whether You observe the entire data vector \(Y = (Y_1, \ldots, Y_n) \) or its sum \(S = \sum_{i=1}^{n} Y_i \).

The distribution of \(S \) in repeated sampling has a **familiar form**: it’s just the **binomial** distribution \(\text{Binomial}(n, \theta) \), which counts the number of successes in a series of IID success/failure trials.

Recall that if \(S \sim \text{Binomial}(n, \theta) \) then \(S \) has **discrete density**

\[
p(S = s | \theta) = \begin{cases}
 \binom{n}{s} \theta^s (1 - \theta)^{n-s} & \text{if } s = 0, \ldots, n \\
 0 & \text{otherwise}
\end{cases}
\]

This gives **another conjugate updating rule** in simple Bayesian modeling for free: if the data set just consists of a single draw \(S \) from a binomial distribution, then the conjugate prior for the success probability \(\theta \) is \(\text{Beta}(\alpha, \beta) \), and the updating rule, which follows directly from (45), is
Two Important General Points

\[
\left\{ \begin{array}{l}
\theta \sim \text{Beta}(\alpha, \beta) \\
(S|\theta) \sim \text{Binomial}(n, \theta)
\end{array} \right\} \rightarrow (\theta|s) \sim \text{Beta}(\alpha + s, \beta + n - s). \tag{50}
\]

1. (the sequential nature of Bayesian learning) Suppose You and I are observing data \((y_1, \ldots, y_n)\) to learn about a parameter \(\theta\), and we have no reason throughout this observation process to change (the sampling distribution/likelihood part of) our model.

We both start with the same prior \(p_1(\theta)\) before any of the data arrive, but we adopt what appear to be different analytic strategies:

- You wait until the whole data set \((y_1, \ldots, y_n)\) has been observed and update \(p_1(\theta)\) directly to the posterior distribution \(p(\theta|y_1, \ldots, y_n)\), whereas

- I stop after seeing \((y_1, \ldots, y_m)\) for some \(m < n\), update \(p_1(\theta)\) to an intermediate posterior distribution \(p(\theta|y_1, \ldots, y_m)\), and then I go on from there, observing \((y_{m+1}, \ldots, y_n)\) and finally updating to a posterior on \(\theta\) that takes account of the whole data set \((y_1, \ldots, y_n)\).
Q₁ What should I use for my intermediate prior distribution \(p_2(\theta) \)?

A₁ Naturally enough, the **right thing to do** is to set \(p_2(\theta) = p(\theta|y_1, \ldots, y_m) \).

The informal way people refer to this is to say that *yesterday’s posterior distribution is today’s prior distribution.*

Q₂ If I use the posterior in A₁, do You and I get the **same answer** for \(p(\theta|y_1, \ldots, y_n) \) in the end?

A₂ Yes (You can check this).

(2) (the generality of **conjugate analysis**) Having seen conjugate priors used with binary outcomes, it’s clear that **conjugate analysis** has a variety of **advantages:**

- It’s **mathematically straightforward**;
- The **posterior mean** turns out to be a **weighted average** of the **prior** and **data means**; and
- The **prior** is nicely **interpretable** as an information source that’s equivalent to a data set, and it’s easy to figure out the **prior sample size**.
It’s natural to wonder, though, what’s lost in addition to what’s gained by adopting a conjugate prior.

The main disadvantage of conjugate priors is that in their simplest form they’re not flexible enough to express all possible forms of prior information.

For example, in the AMI mortality case study, what if you wanted to combine a bimodal prior distribution with the Bernoulli likelihood?

This isn’t possible when using a single member of the Beta(\(\alpha, \beta\)) family.

However, it’s possible to prove the following:

Theorem (Diaconis and Ylvisaker 1985). Given a likelihood that’s a member of the exponential family (more about this later), any prior distribution can be expressed as a mixture of priors that are conjugate to that likelihood.

For example, in the AMI case study the model could be

\[
J \sim p(J) \\
(\theta|J) \sim \text{Beta}(\alpha_J, \beta_J) \quad (51)
\]
2.8 Integer-Valued Outcomes

\[(Y_i|\theta) \overset{\text{IID}}{\sim} \text{Bernoulli}(\theta), \ i = 1, \ldots, n,\]

for some distribution \(p(J)\) on the positive integers — this is completely general but loses some of the advantages of simple conjugate analysis (e.g., closed-form computations are no longer possible).

Case Study: Hospital length of stay for birth of premature babies. As a small part of a study I worked on at the Rand Corporation in the late 1980s, we obtained data on a random sample of \(n = 14\) women who came to a hospital in Santa Monica, CA, in 1988 to give birth to premature babies.

One (integer-valued) outcome of interest was

\[y = \text{length of hospital stay (LOS)}.\]

Here’s a preliminary look at the data in R:

```r
> y
[1] 1 2 1 1 1 2 2 4 3 6 2 1 3 0
> sort(y)
[1] 0 1 1 1 1 1 1 2 2 2 2 3 3 4 6
```
> table(y)
0 1 2 3 4 6
1 5 4 2 1 1
> stem(y, scale = 2)
The decimal point is at the |
 0 | 0
 1 | 00000
 2 | 0000
 3 | 00
 4 | 0
 5 |
 6 | 0
> mean(y)
[1] 2.071429
> sd(y)
[1] 1.54244
> var(y)
[1] 2.37912
One possible model for non-negative integer-valued outcomes is the **Poisson distribution**

\[
P(Y_i = y_i | \lambda) = \begin{cases} \frac{\lambda^{y_i} e^{-\lambda}}{y_i!} & \text{for } y_i = 0, 1, \ldots \\ 0 & \text{otherwise} \end{cases}
\]

for some \(\lambda > 0 \).

As usual, Maple can be used to work out the **mean** and **variance** of this distribution:

\[
> \text{assume}(\lambda > 0);
> p := (y, \lambda) \rightarrow \lambda^y \exp(-\lambda) / y!;
> \text{simplify}(\text{sum}(p(y, \lambda), y = 0 .. \infty));
\]

\[
\lambda
\]

\[
> \text{simplify}(\text{sum}(y \cdot p(y, \lambda), y = 0 .. \infty));
\]

\[
\lambda
\]
Informal Model-Checking

\[\text{simplify}(\sum (y - \lambda)^2 \cdot p(y, \lambda), \]
\[y = 0 .. \text{infinity})) ; \]
\[\lambda \sim \]

Thus if \((Y|\lambda) \sim \text{Poisson}(\lambda)\), \(E(Y) = V(Y) = \lambda\), which people sometimes express by saying that the variance-to-mean ratio (VTMR) for the Poisson is 1.

\textbf{R} can be used to check informally whether the Poisson is a \textbf{good fit} to the LOS data:

\[\text{dpois}(0:7, \text{mean}(y)) \]
[1] 0.126005645 0.261011693 0.270333539 0.186658872 0.096662630
[6] 0.040045947 0.013825386 0.004091186
\[\text{print}(n \leftarrow \text{length}(y)) \]
[1] 14
\[\text{table}(y) / n \]

0 1 2 3 4 6
0.07142857 0.35714286 0.28571429 0.14285714 0.07142857 0.07142857
Informal Model-Checking (continued)

```r
> cbind( c( dpois( 0:6, mean( y ) ),
            1 - sum( dpois( 0:6, mean( y ) ) ) ),
         apply( outer( y, 0:7, '==' ), 2, sum ) / n )

[,1]     [,2]
[1,] 0.126005645 0.07142857
[2,] 0.261011693 0.35714286
[3,] 0.270333539 0.28571429
[4,] 0.186658872 0.14285714
[5,] 0.096662630 0.07142857
[6,] 0.040045947 0.00000000
[7,] 0.013825386 0.07142857
[8,] 0.005456286 0.00000000
```

The second column in the above table records the values of the Poisson probabilities for $\lambda = 2.07$, the mean of the y_i, and the third column is the empirical relative frequencies; informally the fit is reasonably good.

Another informal check comes from the fact that the sample mean and variance are 2.07 and $1.542^2 \approx 2.38$, which are reasonably close.
Exchangeability. As with the AMI mortality case study, before the data arrive I recognize that my uncertainty about the Y_i is exchangeable, and you would expect from a generalization of the binary-outcomes version of de Finetti’s Theorem that the structure of a plausible Bayesian model for the data would then be

$$\theta \sim p(\theta) \quad \text{(prior)}$$

$$\begin{aligned}
(Y_i|\theta) &\sim^{\text{IID}} F(\theta) \quad \text{(likelihood)},
\end{aligned}$$

where θ is some parameter (vector) and $F(\theta)$ is some parametric family of distributions on the non-negative integers indexed by θ.

Thus, in view of the preliminary examination of the data above, a plausible Bayesian model for these data is

$$\begin{aligned}
\lambda &\sim p(\lambda) \quad \text{(prior)}
\end{aligned}$$

$$\begin{aligned}
(Y_i|\lambda) &\sim^{\text{IID}} \text{Poisson}(\lambda) \quad \text{(likelihood)},
\end{aligned}$$

where λ is a positive real number.
Model Uncertainty

(1) This approach to model-building involves a form of cheating, because we’ve used the data twice: once to choose the model, and again to draw conclusions conditional on the chosen model.

The result in general can be a failure to assess and propagate model uncertainty (e.g., Draper 1995).

Frequentist modeling often employs this same kind of cheating in specifying the likelihood function.

(3) There are two Bayesian ways out of this dilemma: cross-validation and Bayesian non-parametric/semi-parametric methods.

The latter is beyond the scope of this course; I’ll give examples of the former later.

To get more practice with Bayesian calculations I’m going to ignore the model uncertainty problem for now and pretend that somehow we knew that the Poisson was a good choice.

The likelihood function in model (54) is
Poisson Likelihood

\[
 l(\lambda|y) = c p_{Y_1, \ldots, Y_n}(y_1, \ldots, y_n | \lambda)
 = c \prod_{i=1}^{n} p_{Y_i}(y_i | \lambda) \\
 = c \prod_{i=1}^{n} \frac{\lambda^{y_i} e^{-\lambda}}{y_i!} = c \lambda^s e^{-n\lambda},
\]

where \(y = (y_1, \ldots, y_n) \) and \(s = \sum_{i=1}^{n} y_i \); here \((\prod_{i=1}^{n} y_i!)^{-1} \) can be absorbed into the generic positive \(c \) because it doesn’t involve \(\lambda \).

Thus (as was true in the Bernoulli model) \(s = \sum_{i=1}^{n} y_i \) is **sufficient** for \(\lambda \) in the Poisson model, and we can write \(l(\lambda|s) \) instead of \(l(\lambda|y) \) if we want.

If a **conjugate** prior \(p(\lambda) \) for \(\lambda \) exists it must be such that the product \(p(\lambda) l(\lambda|s) \) has the same mathematical form as \(p(\lambda) \).

Examination of (55) reveals that the same trick works here as with Bernoulli data, namely **taking the prior to be of the same form as the likelihood**:

\[
 p(\lambda) = c \lambda^{\alpha-1} e^{-\beta\lambda}
\]
for some $\alpha > 0, \beta > 0$ — this is the **Gamma distribution** $\lambda \sim \Gamma(\alpha, \beta)$ for $\lambda > 0$ (see GCSR, Appendix A).

As usual Maple can work out the **normalizing constant**:

```maple
> assume(lambda > 0, alpha > 0, beta > 0);
> p1 := (lambda, alpha, beta) -> lambda^(alpha-1)*exp(-beta*lambda);

p1 := (lambda, alpha, beta) -> lambda^(alpha-1)*exp(-beta*lambda)
> simplify(integrate(p1(lambda, alpha, beta), lambda = 0 .. infinity));

(-alpha~) beta~ GAMMA(alpha~)
```

Thus $c^{-1} = \beta^{-\alpha} \Gamma(\alpha)$ and the **proper definition** of the Gamma distribution is

If $\lambda \sim \Gamma(\alpha, \beta)$ then $p(\lambda) = \frac{\beta^\alpha}{\Gamma(\alpha)} \lambda^{\alpha-1} e^{-\beta \lambda} \quad (57)$

for $\alpha > 0, \beta > 0$.

Bayesian Statistics 2: Exchangeability and Conjugate Modeling
The R Implementation of the Gamma Distribution

As usual R can also be used to explore the behavior of this family of distributions as a function of its inputs α and β, but you need to watch out — there are two different parameterizations in common usage:

> help(dgamma)

GammaDist package:stats R Documentation

The Gamma Distribution

Description:
Density, distribution function, quantile function and random

generation for the Gamma distribution with parameters 'shape' and
'scale'.

Usage:
dgamma(x, shape, rate = 1, scale = 1/rate, log = FALSE)
pgamma(q, shape, rate = 1, scale = 1/rate, lower.tail = TRUE,
log.p = FALSE)
qgamma(p, shape, rate = 1, scale = 1/rate, lower.tail = TRUE,
log.p = FALSE)
rgamma(n, shape, rate = 1, scale = 1/rate)

Arguments:
x, q: vector of quantiles.
The Gamma Distribution in R (continued)

p: vector of probabilities.
n: number of observations. If 'length(n) > 1', the length is taken to be the number required.
rate: an alternative way to specify the scale.
shape, scale: shape and scale parameters. Must be positive, 'scale' strictly.
log, log.p: logical; if 'TRUE', probabilities/densities p are returned as log(p).
lower.tail: logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x].

Details:
If 'scale' is omitted, it assumes the default value of '1'.
The Gamma distribution with parameters 'shape' = a and 'scale' = s has density
\[f(x) = \frac{1}{(s^a \Gamma(a))} x^{(a-1)} e^{-\left(\frac{x}{s}\right)} \]
for x >= 0, a > 0 and s > 0. (Here Gamma(a) is the function implemented by R’s 'gamma()' and defined in its help. Note that a=0 corresponds to the trivial distribution with all mass at point 0.)
The quantity in R corresponding to our α is evidently shape, but notice that what R calls scale is $\frac{1}{\beta}$ for us; the name for β in R is rate, the reciprocal of scale:

```r
lambda.grid.1 <- seq( 0, 12, length = 500 )
postscript( "gamma-beta-equals-1.ps" )
plot( lambda.grid.1, dgamma( lambda.grid.1, shape = 1, rate = 1 ),
    xlab = 'lambda', ylab = 'Density', type = 'l', main = 'beta = 1' )
text( 1, 0.9, 'alpha = 1' )
lines( lambda.grid.1, dgamma( lambda.grid.1, shape = 2, rate = 1 ),
    lty = 2, col = 'red' )
text( 2, 0.4, 'alpha = 2', col = 'red' )
lines( lambda.grid.1, dgamma( lambda.grid.1, shape = 3, rate = 1 ),
    lty = 3, col = 'blue' )
text( 3.5, 0.3, 'alpha = 3', col = 'blue' )
lines( lambda.grid.1, dgamma( lambda.grid.1, shape = 6, rate = 1 ),
    lty = 4, col = 'green' )
text( 9, 0.15, 'alpha = 6', col = 'green' )
dev.off()
```
The R name for α is a **good choice**: α evidently controls the **shape** of the Gamma family.

What distributional shape does the Gamma approach as $\alpha \to \infty$?
The Exponential Distribution

When $\alpha = 1$ the Gamma distributions have a special form that you’ll probably recognize — they’re the exponential distributions $\mathcal{E}(\beta)$: for $\beta > 0$

$$
\text{If } \lambda \sim \mathcal{E}(\beta) \text{ then } p(\lambda) = \begin{cases}
\beta e^{-\beta \lambda} & \text{for } \lambda > 0 \\
0 & \text{otherwise}
\end{cases}.
$$ (58)

What about the effect of β, or its reciprocal, on the distribution?

```r
lambda.grid.2 <- seq( 0, 5, length = 500 )
plot( lambda.grid.2, dgamma( lambda.grid.2, shape = 2, rate = 1 ),
     xlab = 'lambda', ylab = 'Density', type = 'l', main = 'alpha=2',
     ylim = c( 0, 1.1 ) )
text( 2.5, 0.3, 'beta=1' )
lines( lambda.grid.2, dgamma( lambda.grid.2, shape = 2, rate = 2 ),
      lty = 2, col = 'red' )
text( 1.5, 0.6, 'beta=2', col = 'red' )
lines( lambda.grid.2, dgamma( lambda.grid.2, shape = 2, rate = 3 ),
      lty = 3, col = 'blue' )
text( 1, 1, 'beta=3', col = 'blue' )
```
In the Gamma family the parameter β controls the spread of the distribution, but $\frac{1}{\beta}$ controls the scale, in the sense that as $\frac{1}{\beta}$ increases the distribution becomes more spread out.
Definition Given a random quantity y whose density $p(y|\sigma)$ depends on a parameter $\sigma > 0$, if it’s possible to express $p(y|\sigma)$ in the form $\frac{1}{\sigma} f\left(\frac{y}{\sigma}\right)$, where $f(\cdot)$ is a function which does not depend on y or σ, then σ is called a **scale parameter** for the parametric family p.

Letting $f(t) = e^{-t}$ and taking $\sigma = \frac{1}{\beta}$, You can see that the Gamma family can be expressed in this way, so $\frac{1}{\beta}$ is a **scale parameter** for the Gamma distribution.

As usual Maple can also work out the **mean** and **variance** of this family:

```maple
> p := (lambda, alpha, beta) -> beta^alpha * lambda^(alpha-1) * exp(-beta * lambda) / GAMMA(alpha);

1
```
Conjugate Updating With the Poisson Likelihood

> simplify(integrate(lambda * p(lambda, alpha, beta),
lambda = 0 .. infinity));

\[
\alpha \sim \beta \sim
\]

> simplify(integrate((lambda - alpha / beta)^2 * p(lambda, alpha, beta), lambda = 0 .. infinity));

\[
\alpha \sim \beta^2 \sim 2 \sim
\]

Thus if \(\lambda \sim \Gamma(\alpha, \beta) \) then \(E(\lambda) = \frac{\alpha}{\beta} \) and \(V(\lambda) = \frac{\alpha}{\beta^2} \), and conjugate updating is now straightforward: with \(y = (y_1, \ldots, y_n) \) and \(s = \sum_{i=1}^{n} y_i \), by Bayes’s Theorem

\[
p(\lambda|y) = c p(\lambda) l(\lambda|y)
\]

\[
= c \left(c \lambda^{\alpha-1} e^{-\beta \lambda} \right) \left(c \lambda^s e^{-n \lambda} \right)
\]

\[
= c \lambda^{(\alpha+s)-1} e^{-(\beta+n)\lambda},
\]

and the resulting distribution is just \(\Gamma(\alpha + s, \beta + n) \).
Conjugate Poisson Analysis

This can be summarized as follows:

\[
\begin{align*}
\{ \lambda | \alpha, \beta \} &\sim \Gamma(\alpha, \beta) \\
\{ Y_i | \lambda \} &\overset{\text{IID}}{\sim} \text{Poisson}(\lambda), \\
i = 1, \ldots, n
\end{align*}
\]

\rightarrow (\lambda | s) \sim \Gamma(\alpha^*, \beta^*),
\]

where \((\alpha^*, \beta^*) = (\alpha + s, \beta + n)\) and \(s = \sum_{i=1}^{n} y_i\) is a sufficient statistic for \(\lambda\) in this model.

The posterior mean of \(\lambda\) here is evidently \(\frac{\alpha^*}{\beta^*} = \frac{\alpha + s}{\beta + n}\), and the prior and data means are \(\frac{\alpha}{\beta}\) and \(\bar{y} = \frac{s}{n}\), so (as was the case in the Bernoulli model) the posterior mean can be written as a weighted average of the prior and data means:

\[
\frac{\alpha + s}{\beta + n} = \left(\frac{\beta}{\beta + n} \right) \left(\frac{\alpha}{\beta} \right) + \left(\frac{n}{\beta + n} \right) \left(\frac{s}{n} \right).
\]

Thus the prior sample size \(n_0\) in this model is just \(\beta\) (which makes sense given that \(\frac{1}{\beta}\) is the scale parameter for the Gamma distribution), and the prior acts like a dataset consisting of \(\beta\) observations with mean \(\frac{\alpha}{\beta}\).
The $\Gamma(\epsilon, \epsilon)$ Prior

Suppose that, before the current data set is scheduled to arrive, I know little about the mean length of hospital stay of women giving birth to premature babies.

Then for my prior on λ I’d like to specify a member of the $\Gamma(\alpha, \beta)$ family which is relatively flat in the region in which the likelihood function is appreciable.

A convenient and fairly all-purpose default choice of this type is $\Gamma(\epsilon, \epsilon)$ for some small ϵ like 0.001.

When used as a prior this distribution has prior sample size ϵ; it also has mean 1, but that usually doesn’t matter when ϵ is tiny.

As the graph on the next page shows, this distribution is rather flat over the entire region $(1, \infty)$; it has an unpleasant spike near 0, but this is only a potential problem when the likelihood density is concentrated near 0 (in that case You may be inserting stronger prior information than You intended).
With the LOS data $s = 29$ and $n = 14$, so the likelihood for λ is like a $\Gamma(30, 14)$ density, which has mean $\frac{30}{14} \doteq 2.14$ and SD $\sqrt{\frac{30}{14^2}} \doteq 0.39$.

Thus by the Empirical Rule the likelihood is appreciable in the range $(\text{mean } \pm 3 \text{ SD}) \doteq (2.14 \pm 1.17) \doteq (1.0, 3.3)$, and you can see from the plot above that the prior is indeed relatively flat in this region.
From the **Bayesian updating** in (60), with a $\Gamma(0.001, 0.001)$ prior the **posterior** is $\Gamma(29.001, 14.001)$.

It’s useful, in summarizing the **updating** from prior through likelihood to posterior, to make a table that records measures of **center** and **spread** at each point along the way.

For example, the $\Gamma(0.001, 0.001)$ **prior**, when regarded (as usual) as a **density** for λ, has mean 1.000 and $\text{SD } \sqrt{1000} \approx 31.6$ (i.e., informally, as far as we’re concerned, before the data arrive λ could be **anywhere between 0 and (say) 100**).

And the $\Gamma(29.001, 14.001)$ **posterior** has mean $\frac{29.001}{14.001} \approx 2.071$ and $\text{SD } \sqrt{\frac{29.001}{14.001^2}} \approx 0.385$, so after the data have arrived we know **quite a bit more than before**.

There are two main ways to summarize the **likelihood** — Fisher’s approach based on **maximizing** it, and the Bayesian approach based on regarding it as a density and **integrating** over it — and it’s instructive to compute them both and **compare**.
Likelihood Calculations

The **likelihood-integrating** approach (which, at least in one-parameter problems, is essentially equivalent to Fisher’s (1935) attempt at **fiducial** inference) treats the $\Gamma(30,14)$ likelihood as a density for λ, with mean $\frac{30}{14} \doteq 2.143$ and SD $\sqrt{\frac{30}{14^2}} \doteq 0.391$.

As for the **likelihood-maximizing** approach, from (55) the log likelihood function is

$$ll(\lambda|y) = ll(\lambda|s) = \log\left(c \lambda^s e^{-n\lambda}\right) = c + s \log \lambda - n\lambda,$$

and this is **maximized** as usual (check that it’s the max) by setting the **derivative** equal to 0 and solving:

$$\frac{\partial}{\partial \lambda} ll(\lambda|s) = \frac{s}{\lambda} - n = 0 \quad \text{iff} \quad \lambda = \hat{\lambda}_{\text{MLE}} = \frac{s}{n} = \bar{y}. \quad (63)$$

Since the MLE $\hat{\lambda}_{\text{MLE}}$ turns out to be our old friend the **sample mean** \bar{y}, you might be tempted to conclude immediately that $\hat{SE}(\hat{\lambda}_{\text{MLE}}) = \frac{\hat{\sigma}}{\sqrt{n}}$, where $\hat{\sigma} = 1.54$ is the sample SD, and indeed it’s true in repeated sampling that $V(\bar{Y}) = \frac{V(Y_1)}{n}$; but the **Poisson distribution** has variance $V(Y_1) = \lambda$, so that
\[\sqrt{V(\hat{Y})} = \frac{\sqrt{\lambda}}{\sqrt{n}}, \] and there’s no guarantee in the Poisson model that the best way to estimate \(\sqrt{\lambda} \) in this standard error calculation is with the sample SD \(\hat{\sigma} \) (in fact we have a strong hint from the above MLE calculation that the sample variance is irrelevant to the estimation of \(\lambda \) in the Poisson model, since the sample variance does not arise in the Poisson likelihood).

The right (large-sample) likelihood-based standard error for \(\hat{\lambda}_{\text{MLE}} \), using the Fisher information logic we examined earlier, is obtained from the following calculation:

\[
\frac{\partial^2}{\partial \lambda^2} \log l(\lambda|y) = -\frac{s}{\lambda^2}, \quad \text{so} \\
\hat{I}(\hat{\lambda}_{\text{MLE}}) = \left[-\frac{\partial^2}{\partial \lambda^2} \log l(\lambda|y) \right]_{\lambda=\hat{\lambda}_{\text{MLE}}} \\
\quad = \left(\frac{s}{\lambda^2} \right)_{\lambda=\bar{y}} = \frac{s}{\bar{y}^2} = \frac{n}{\bar{y}}, \quad \text{and} \\
\hat{V}(\hat{\lambda}_{\text{MLE}}) = \hat{I}^{-1}(\hat{\lambda}_{\text{MLE}}) = \frac{\bar{y}}{n} = \frac{\hat{\lambda}_{\text{MLE}}}{n}.
\]
So in this case study Fisher’s **likelihood-maximizing** approach would estimate λ by $\hat{\lambda}_{\text{MLE}} = \bar{y} = \frac{29}{14} \doteq 2.071$, with a **give-or-take** of $SE(\hat{\lambda}_{\text{MLE}}) = \sqrt{\frac{\lambda_{\text{MLE}}}{n}} = \frac{1.44}{\sqrt{14}} \doteq 0.385$.

All of this may be **summarized** in the following table:

<table>
<thead>
<tr>
<th>Likelihood</th>
<th>Prior</th>
<th>Maximizing</th>
<th>Integrating</th>
<th>Posterior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean/Estimate</td>
<td>1.00</td>
<td>2.071</td>
<td>2.143</td>
<td>2.071</td>
</tr>
<tr>
<td>SD/SE</td>
<td>31.6</td>
<td>0.385</td>
<td>0.391</td>
<td>0.385</td>
</tr>
</tbody>
</table>

The **discrepancies** between the likelihood-maximizing and likelihood-integrating columns in this table would be smaller with a larger sample size and would **tend to 0** as $n \to \infty$.

The **prior-likelihood-posterior plot** comes out like this:

```r
> plot( { p( lambda, 0.001, 0.001 ), p( lambda, 30, 14 ), p( lambda, 29.001, 14.001 ) }, lambda = 0 .. 5, color = black );
```
For interval estimation in the maximum-likelihood approach the best we could do, using the technology I’ve described to you so far, would be to appeal to the CLT (even though \(n \) is only 14) and use \(\hat{\lambda}_{\text{MLE}} \pm 1.96 \hat{SE}(\hat{\lambda}_{\text{MLE}}) = 2.071 \pm (1.96)(0.385) = (1.316, 2.826) \) as an approximate 95% confidence interval for \(\lambda \).
The Interval Should Be Asymmetric in This Problem

You can see from the previous plot that the likelihood function is asymmetric, so a more careful method (e.g., the bootstrap; Efron 1979) would be needed to create a better interval estimate from the likelihood point of view.

Some trial and error with Maple can be used to find the lower and upper limits of the central 95% posterior interval for λ:

\[
> \text{evalf}(\int_{0}^{1.316} p(\lambda, 29.001, 14.001) \, d\lambda) = 0.01365067305
\]

\[
> \text{evalf}(\int_{0}^{1.4} p(\lambda, 29.001, 14.001) \, d\lambda) = 0.02764660367
\]

\[
> \text{evalf}(\int_{0}^{1.387} p(\lambda, 29.001, 14.001) \, d\lambda) = 0.02495470339
\]

\[
> \text{evalf}(\int_{2.826}^{\infty} p(\lambda, 29.001, 14.001) \, d\lambda) = 0.03403487851
\]

\[
> \text{evalf}(\int_{2.890}^{\infty} p(\lambda, 29.001, 14.001) \, d\lambda) = 0.02505307631
\]

Thus a 95% (central) posterior interval for λ, given a diffuse prior, runs from 1.387 to 2.890, and is (correctly) asymmetric around the posterior mean of 2.071.
R can be used to work out the limits of this interval even more readily:

```r
> help(qgamma)
GammaDist package:base R Documentation
The Gamma Distribution
Description:
Density, distribution function, quantile function and random
generation for the Gamma distribution with parameters ‘shape’ and
‘scale’.
Usage:
dgamma(x, shape, scale=1, log = FALSE)
pgamma(q, shape, scale=1, lower.tail = TRUE, log.p = FALSE)
qgamma(p, shape, scale=1, lower.tail = TRUE, log.p = FALSE)
rgamma(n, shape, scale=1)
Arguments:
x, q: vector of quantiles.
p: vector of probabilities.
n: number of observations.
shape, scale: shape and scale parameters.
log, log.p: logical; if TRUE, probabilities p are given as log(p).
lower.tail: logical; if TRUE (default), probabilities are P[X <= x],
otherwise, $P[X > x]$. 

Value: 

‘dgamma’ gives the density, ‘pgamma’ gives the distribution function ‘qgamma’ gives the quantile function, and ‘rgamma’ generates random deviates.

See Also: 

‘gamma’ for the Gamma function, ‘dbeta’ for the Beta distribution and ‘dchisq’ for the chi-squared distribution which is a special case of the Gamma distribution.

> qgamma( 0.025, 29.001, 1 / 14.001 )
[1] 1.387228
> qgamma( 0.975, 29.001, 1 / 14.001 )
[1] 2.890435

Maple or R can also be used to obtain the probability content, according to the posterior distribution, of the approximate 95% (large-sample) likelihood-based interval:

> evalf( Int( p( lambda, 29.001, 14.001 ), lambda = 1.316 .. 2.826 ) );
.9523144484
Predictive Distributions

So the **maximization** approach has led to **decent approximations** here (later I’ll give examples where maximum likelihood doesn’t do well in small samples).

**Predictive distributions** in this model can be computed by **Maple in the usual way**: e.g., to compute \( p(y_{n+1}|y) \) for \( y = (y_1, \ldots, y_n) \) we want to evaluate

\[
p(y_{n+1}|y) = \int_0^\infty p(y_{n+1}, \lambda|y) \, d\lambda
\]

\[
= \int_0^\infty p(y_{n+1}|\lambda, y) \, p(\lambda|y) \, d\lambda
\]

\[
= \int_0^\infty p(y_{n+1}|\lambda) \, p(\lambda|y) \, d\lambda
\]

\[
= \int_0^\infty \frac{\lambda^{y_{n+1}} e^{-\lambda}}{y_{n+1}!} \frac{(\beta^*)^{\alpha^*}}{\Gamma(\alpha^*)} \lambda^{\alpha^*-1} e^{-\beta^* \lambda} \, d\lambda,
\]

\[
= \frac{(\beta^*)^{\alpha^*}}{\Gamma(\alpha^*) y_{n+1}!} \int_0^\infty \lambda^{(\alpha^*+y_{n+1})-1} e^{-(\beta^*+1)\lambda} \, d\lambda,
\]

where \( \alpha^* = \alpha + s \) and \( \beta^* = \beta + n \); in these expressions \( y_{n+1} \) is a **non-negative integer**.
Predictive Distributions (continued)

\[ > \text{assume( } \text{astar} > 0, \text{bstar} > 0, \text{yf} > 0 \text{ );} \]
\[ > \text{simplify( } \text{bstar}^{\text{astar}} \cdot \text{int( } \text{lambda}^{\text{astar}}( \text{astar} + \text{yf} - 1) \cdot \exp( - ( \text{bstar} + 1) \cdot \text{lambda} ) , \text{lambda} = 0 \ldots \text{infinity} ) / \]
\[ ( \text{GAMMA( } \text{astar} \text{ )} \cdot \text{yf!} ) \text{ );} \]
\[ \text{astar}~ ^{(-}\text{astar}~ - \text{yf}~) \]
\[ \text{bstar}~ ^{(bstar~ + 1)} \]
\[ \text{GAMMA(astar~ + yf~)} \]
\[ \frac{\text{GAMMA(astar~)}}{\text{GAMMA(yf~ + 1)}} \]

A bit of rearranging then gives that for \( y_{n+1} = 0, 1, \ldots, \)

\[ p(y_{n+1}|y) = \frac{\Gamma(\alpha^* + y_{n+1})}{\Gamma(\alpha^*) \Gamma(y_{n+1} + 1)} \left( \frac{\beta^*}{\beta^* + 1} \right)^{\alpha^*} \left( \frac{1}{\beta^* + 1} \right)^{y_{n+1}}. \quad (66) \]

This is called the Poisson-Gamma distribution, because (65) is asking us to take a mixture (weighted average) of Poisson distributions, using probabilities from a Gamma distribution as the mixing weights.

(66) is a generalization of the negative binomial distribution (e.g., Johnson and Kotz 1994), which you may have encountered in your earlier probability study.
Maple can try to get simple expressions for the mean and variance of this distribution:

\[
> \text{assume}(\alpha > 0, \beta > 0); \\
> \text{pg} := (y, \alpha, \beta) \rightarrow \frac{\Gamma(\alpha + y) \cdot \left(\frac{\beta}{\beta + 1}\right)^{\alpha} \cdot \left(\frac{1}{\beta + 1}\right)^{y}}{\Gamma(\alpha) \cdot \Gamma(y + 1)}; \\
\]

\[
pg := (y, \alpha, \beta) \rightarrow \frac{\Gamma(\alpha + y)}{\Gamma(\alpha) \cdot \Gamma(y + 1)} \\
\]

\[
> \text{simplify}(\sum(\text{pg}(y, \alpha, \beta), y = 0 .. \infty)); \\
1 \\
> \text{simplify}(\sum(y \cdot \text{pg}(y, \alpha, \beta), y = 0 .. \infty)); \\
\alpha^{-} \cdot \frac{\beta^{-}}{} \\
\]

So the mean of the Poisson-Gamma($\alpha^*, \beta^*$) distribution is \(E(y_{n+1}|y) = \frac{\alpha^*}{\beta^*}\).
Contrasting Inference and Prediction

> simplify( sum( ( y - alpha / beta )^2 * pg( y, alpha, beta ),
> y = 0 .. infinity ) );

\[
\alpha \sim \frac{(\beta + 1)}{2}
\]

And the variance of the Poisson-Gamma(\(\alpha^*, \beta^*\)) distribution is

\[
V(y_{n+1}|y) = \frac{\alpha^*}{\beta^*} \left(1 + \frac{1}{\beta^*}\right).
\] (67)

This provides an interesting contrast between inference and prediction: we’ve already seen in this model that the posterior mean and variance of \(\lambda\) are

\[
\frac{\alpha^*}{\beta^*} = \frac{\alpha+s}{\beta+n} \quad \text{and} \quad \frac{\alpha^*}{(\beta^*)^2} = \frac{\alpha+s}{(\beta+n)^2},
\]

respectively.

Thus \(\lambda\) (the inferential objective) and \(y_{n+1}\) (the predictive objective) have the same posterior mean, but the posterior variance of \(y_{n+1}\) is much larger, as can be seen by the following argument.
(1) Denoting by \( \mu \) the mean of the population from which the \( Y_i \) are thought of as (like) a random sample, when \( n \) is large \( \alpha \) and \( \beta \) will be small in relation to \( s \) and \( n \), respectively, and the ratio \( \bar{y} = \frac{s}{n} \) should more and more closely approach \( \mu \) — thus for large \( n \),

\[
E(\lambda|y) = E(y_{n+1}|y) \doteq \mu. \tag{68}
\]

(2) For the Poisson distribution the (population) mean \( \mu \) and variance \( \sigma^2 \) are equal, meaning that for large \( n \) the ratio \( \frac{\alpha+s}{\beta+n} \) will be close both to \( \mu \) and to \( \sigma^2 \). Thus for large \( n \),

\[
V(\lambda|y) \doteq \frac{\sigma^2}{n} \quad \text{but} \quad V(y_{n+1}|y) \doteq \sigma^2. \tag{69}
\]
Predictive Model-Checking

An informal way to restate (69) is to say that accurate prediction of new data is an order of magnitude harder (in powers of \( n \)) than accurate inference about population parameters.

**Bayesian model-checking with predictive distributions.** One way to check a model like (60) is as follows — as \( i \) goes from 1 to \( n \),
do the following two things:

1. Temporarily set aside observation \( y_i \), obtaining a new dataset \( y_{-i} = (y_1, \ldots, y_{i-1}, y_{i+1}, \ldots, y_n) \) with \( (n - 1) \) observations.
2. Use the current Bayesian model applied to \( y_{-i} \) to predict \( y_i \), and summarize the extent to which the actual value of \( y_i \) is surprising in view of this predictive distribution.

A simple measure of surprise is **predictive z-scores** (later, if there’s time, I’ll talk about a better measure):

\[
    z_i = \frac{y_i - E[y_i | y_{-i}]}{\sqrt{V[y_i | y_{-i}]}}. \tag{70}
\]
The idea is to compare the surprise measure with its **expected behavior** if the model had been "**correct**" (e.g., $z = (z_1, \ldots, z_n)$ should have mean 0 and SD 1, and a normal qqplot of the $z_i$ values should be approximately linear).

Here's some R code to carry out this program on the **LOS data**.

```r
> poisson.gamma <- function(y, alpha, beta) {
 log.density <- lgamma(alpha + y) + alpha * log(beta / (beta + 1)) - y * log(beta + 1) - lgamma(alpha) - lgamma(y + 1)
 return(exp(log.density))
}
> print(y <- sort(y))
[1] 0 1 1 1 1 1 2 2 2 2 3 3 4 6
> print(y.current <- y[-1])
[1] 1 1 1 1 1 2 2 2 2 3 3 4 6
> print(n.current <- length(y.current))
[1] 13
> alpha <- beta <- 0.001
> print(s.current <- sum(y.current))
[1] 29
```
> print( alpha.star <- alpha + s.current )
[1] 29.001
> print( beta.star <- beta + n.current )
[1] 13.001
> print( pg.current <- poisson.gamma( 0:9, alpha.star, beta.star ) )
[1] 0.1165953406 0.2415099974 0.2587508547 0.1909752933 0.1091243547
[6] 0.0514422231 0.0208209774 0.0074357447 0.0023899565 0.0007017815
> plot( 0:9, pg.current, type = 'n', xlab = 'y', ylab = 'Density' )
> for ( i in 0:9 ) {
    segments( i, 0, i, pg.current[ i + 1 ] )
}
The omitted observed value of 0 is **not too unusual** in this predictive distribution.

The following R code **loops** through the whole dataset to get the **predictive z-scores**.

```r
alpha <- beta <- 0.001
z <- rep(0, n)
for (i in 1:n) {
 y.current <- y[-i]
 n.current <- length(y.current)
 s.current <- sum(y.current)
 alpha.star <- alpha + s.current
 beta.star <- beta + n.current
 predictive.mean.current <- alpha.star / beta.star
 predictive.SD.current <- sqrt((alpha.star / beta.star) * (1 + 1 / beta.star))
 z[i] <- (y[i] - predictive.mean.current) / predictive.SD.current
}
```
Predictive Model-Checking (continued)

\[
z
\begin{bmatrix}
-1.43921925 & -0.75757382 & -0.75757382 & -0.75757382 & -0.75757382 \\
-0.75757382 & -0.05138023 & -0.05138023 & -0.05138023 & -0.05138023 \\
0.68145253 & 0.68145253 & 1.44329065 & 3.06513271
\end{bmatrix}
\]

\[
\text{mean}(z)
\]
[1] 0.03133708

\[
\text{sqrt}(\text{var}(z))
\]
[1] 1.155077

\[
\text{qqnorm}(z)
\]
\[
\text{abline}(0, 1)
\]
The 14 predictive z-scores have mean 0.03 (about right) and SD 1.16 (close enough to 1 when sampling variability is considered?), and the normal qqplot above shows that the only really surprising observation in the data, as far as the Poisson model was concerned, is the value of 6, which has a z-score of 3.07.

NB The figure above is only a crude approximation to the right qqplot, which would have to be created by simulation; even so it’s enough to suggest how the model might be improved.

I would conclude informally (a) that the Poisson is a decent model for these data, but (b) if you wanted to expand the model in a direction suggested by this diagnostic you should look for a model with extra-Poisson variation: the sample VTMR in this dataset was about 1.15.

Diffuse priors in the LOS case study. In specifying a diffuse prior for \( \lambda \) in the LOS case study, several alternatives to \( \Gamma(\epsilon, \epsilon) \) might occur to you, including \( \Gamma(1, \epsilon) \), \( \Gamma(\alpha, \beta) \) for some large \( \alpha \) (like 20, to get a roughly normal prior) and small \( \beta \) (like 1, to have a small prior sample size), and \( U(0, C) \) for some cutoff \( C \) (like 4) chosen to avoid truncation of the likelihood function, where \( U(a, b) \) denotes the uniform distribution on \( (a, b) \).
Prior Specification: Sensitivity Analysis

\[
\Gamma(1, \epsilon) \text{ doesn't look promising initially as a flat prior, but that's a consequence of Maple's default choice of vertical axis:}
\]

\[
> \text{plot( p( lambda, 1.0, 0.001 ), lambda = 0 .. 4, v = 0 .. 0.05, color = black );}
\]
Prior Specification: Sensitivity Analysis (continued)

\[ \text{plot( p( lambda, 20, 1 ), lambda = 0 .. 4, color = black )}; \]

(Left: right-hand plot on previous page with more sensible vertical scale; right: \( \Gamma(20, 1) \) with not-so-sensible horizontal scale)

\[ \text{plot( p( lambda, 20, 1 ), lambda = 0 .. 40, color = black )}; \]

As is evident on the next page, \( \Gamma(20, 1) \) does indeed look not far from Gaussian, and at first it may appear that it is indeed relatively flat.
in the region where the likelihood is appreciable ($\lambda \in (1.0, 3.3)$), but we’ll see below that it’s actually **rather more informative** than we intend.

Recalling that the **mean** and **SD** of a $\Gamma(\alpha, \beta)$ random quantity are $\frac{\alpha}{\beta}$ and $\sqrt{\frac{\alpha}{\beta^2}}$, respectively, and that when used as a prior with the Poisson likelihood the $\Gamma(\alpha, \beta)$ distribution acts like a dataset with **prior sample size** $\beta$, you can construct the following table:

<table>
<thead>
<tr>
<th>Prior</th>
<th>Posterior</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha$</td>
<td>$\alpha^*$</td>
</tr>
<tr>
<td>$\beta = \frac{\alpha}{\beta}$</td>
<td>Sample Size</td>
</tr>
<tr>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>1</td>
<td>0.001</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>0.001</td>
</tr>
<tr>
<td>$U(0, C)$ for $C &gt; 4$</td>
<td>$\frac{C}{2}$</td>
</tr>
</tbody>
</table>
The $\Gamma(1, \epsilon)$ prior leads to an analysis that’s essentially equivalent to the integrated likelihood (fiducial) approach back on page 100, and the $U(0, C)$ prior for $C > 4$ (say) produces similar results: $U(0, C)$ yields the $\Gamma(s + 1, n)$ posterior truncated to the right of $C$ (and this truncation has no effect if you choose $C$ big enough).

You might say that the $U(0, C)$ distribution has a prior sample size of 0 in this analysis, and its prior mean $\frac{C}{2}$ and SD $\frac{C}{\sqrt{12}}$ (both of which can be made arbitrarily large by letting $C$ grow without bound) are irrelevant (an example of how intuition can change when you depart from the class of conjugate priors).

> plot( { p( lambda, 29.001, 14.001 ), p( lambda, 30, 14.001 ),
p( lambda, 49, 15 ), p( lambda, 49, 14.001 ) }, lambda = 0 .. 6,
color = black );

The moral from the table above and the graph on the next page is that with only $n = 14$ observations, some care is needed (e.g., through pre-posterior analysis) to achieve a prior that doesn’t affect the posterior very much, if that’s the scientifically appropriate information content of the prior.
(Reading from left to right, **posterior**s with the following **priors**: 
\[ \Gamma(0.001, 0.001), \Gamma(1, 0.001), \Gamma(20, 1), \Gamma(20, 0.001) \]
2.9 Continuous Outcomes

For **continuous outcomes** there’s an analogue of de Finetti’s Theorem that’s **equally central** to Bayesian model-building (e.g., Bernardo and Smith, 1994):

**de Finetti’s Theorem for Continuous Outcomes.** If $Y_1, Y_2, \ldots$ is an infinitely exchangeable sequence of **real-valued** random quantities with probability measure $p$, there exists a probability measure $Q$ over $\mathcal{D}$, the space of all distribution functions on $\mathcal{R}$, such that the joint distribution function of $Y_1, \ldots, Y_n$ has the form

$$p(y_1, \ldots, y_n) = \int_{\mathcal{D}} \prod_{i=1}^{n} F(y_i) dQ(F),$$

(71)

where $Q(F) \overset{P}{=} \lim_{n \to \infty} p(F_n)$ and $F_n$ is the **empirical distribution function** based on $Y_1, \ldots, Y_n$.

In other words, exchangeability of real-valued observables is **equivalent** to the hierarchical model

$$F \sim p(F) \quad \text{(prior)}$$

$$(Y_i|F) \overset{\text{IID}}{\sim} F \quad \text{(likelihood)}$$

(72)
for some prior distribution $p$ on the set $D$ of all possible CDFs.

This prior makes the continuous form of de Finetti’s Theorem considerably harder to apply: to take the elicitation task seriously is to try to specify a probability distribution on a function space ($F$ is in effect an infinite-dimensional parameter).

(NB This task is not unique to Bayesians — it’s equivalent to asking “Where does the likelihood come from?” in frequentist analyses of observational data.)

What people often do in practice is to appeal to considerations that narrow down the field, such as an a priori judgment that the $Y_i$ ought to be symmetrically distributed about a measure of center $\mu$, and then try to use a fairly rich parametric family satisfying (e.g.) the symmetry restriction as a substitute for all of $D$.

Strictly speaking you’re not supposed to look at the $Y_i$ while specifying your prior on $D$ — this can lead to a failure to fully assess and propagate model uncertainty — but not doing so can permit the data to surprise you in ways
Bayesian Nonparametric Methods

that would make you want to go back and revise your prior (this is an example of **Cromwell’s Rule** in action).

As mentioned earlier, in this course I’ll suggest two potential ways out of this dilemma, based on **out-of-sample predictive validation** (the model-checking in the LOS data above was an example of this) and **Bayesian nonparametrics**.

**Case Study:** *Measurement of physical constants.* What used to be called the National Bureau of Standards (NBS) in Washington, DC, conducts extremely high precision measurement of physical constants, such as the actual weight of so-called **check-weights** that are supposed to serve as reference standards (like the official kg).

In 1962–63, for example, $n = 100$ weighings (listed below) of a block of metal called **NB10**, which was supposed to weigh exactly 10g, were made under conditions **as close to IID as possible** (Freedman et al., 1998).

The data are on the next page, and give rise to (at least) the following questions: **Q:** (a) How much does NB10 **really weigh**? (b) How certain are you given the data that the true weight of NB10 is **less than** (say) 405.25?
Gaussian Modeling

And (c) How accurately can you predict the 101st measurement?

<table>
<thead>
<tr>
<th>Value</th>
<th>375</th>
<th>392</th>
<th>393</th>
<th>397</th>
<th>398</th>
<th>399</th>
<th>400</th>
<th>401</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>4</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Value</th>
<th>402</th>
<th>403</th>
<th>404</th>
<th>405</th>
<th>406</th>
<th>407</th>
<th>408</th>
<th>409</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>8</td>
<td>6</td>
<td>9</td>
<td>5</td>
<td>12</td>
<td>8</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Value</th>
<th>410</th>
<th>411</th>
<th>412</th>
<th>413</th>
<th>415</th>
<th>418</th>
<th>423</th>
<th>437</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

The graph below is a normal qqplot of the 100 measurements \( y = (y_1, \ldots, y_n) \), which have a mean of \( \bar{y} = 404.6 \) (the units are micrograms below 10g) and an SD of \( s = 6.5 \).

Evidently it’s plausible in answering these questions to assume symmetry of the “underlying distribution” \( F \) in de Finetti’s Theorem.

One standard choice, for instance, is the Gaussian:

\[
(\mu, \sigma^2) \sim p(\mu, \sigma^2) \\
(Y_i|\mu, \sigma^2) \overset{\text{IID}}{\sim} N(\mu, \sigma^2). \tag{73}
\]
Here $N(\mu, \sigma^2)$ is the familiar normal density

$$p(y_i | \mu, \sigma^2) = \frac{1}{\sigma \sqrt{2\pi}} \exp \left[ - \frac{1}{2\sigma^2} (y_i - \mu)^2 \right].$$
One-Parameter Gaussian Location Model

Even though you can see from the previous graph that (73) is not a good model for the NB10 data, I’m going to fit it anyway, for practice in working with the normal distribution from a Bayesian point of view (later we’ll improve upon the Gaussian).

(73) is more complicated than the models in the AMI and LOS case studies because the parameter $\theta$ here is a vector: $\theta = (\mu, \sigma^2)$.

To warm up for this new complexity let’s first consider a cut-down version of the model in which we pretend that $\sigma$ is known to be $\sigma_0 = 6.5$ (the sample SD).

This simpler model is then

$$
\left\{ \begin{array}{l}
\mu \sim p(\mu) \\
(Y_i|\mu) \overset{\text{IID}}{\sim} N(\mu, \sigma_0^2) \\
\end{array} \right. 
$$

(75)

The likelihood function in this model is

$$
l(\mu|y) = \prod_{i=1}^{n} \frac{1}{\sigma_0 \sqrt{2\pi}} \exp \left[ -\frac{1}{2\sigma_0^2} (y_i - \mu)^2 \right]
$$
Gaussian Inference For $\mu$

\begin{align*}
= & \ c \ \exp \left[ - \frac{1}{2\sigma_0^2} \sum_{i=1}^{n} (y_i - \mu)^2 \right] \\
= & \ c \ \exp \left[ - \frac{1}{2\sigma_0^2} \left( \sum_{i=1}^{n} y_i^2 - 2\mu \sum_{i=1}^{n} y_i + n\mu^2 \right) \right] \\
= & \ c \ \exp \left[ - \frac{1}{2} \left( \frac{\sigma_0^2}{n} \right) (\mu - \bar{y})^2 \right].
\end{align*}

(76)

Thus the likelihood function, when thought of as a density for $\mu$, is a normal distribution with mean $\bar{y}$ and SD $\frac{\sigma_0}{\sqrt{n}}$.

Notice that this SD is the same as the frequentist standard error for $\bar{Y}$ based on an IID sample of size $n$ from the $N(\mu, \sigma_0^2)$ distribution.

(76) also shows that the sample mean $\bar{y}$ is a sufficient statistic for $\mu$ in model (75).

In finding the conjugate prior for $\mu$ it would be nice if the product of two normal distributions is another normal distribution, because that would demonstrate that the conjugate prior is normal.
Gaussian Inference For $\mu$ (continued)

Suppose therefore, to see where it leads, that the prior for $\mu$ is (say)

$$
p(\mu) = N(\mu_0, \sigma^2_\mu).
$$

Then Bayes’s Theorem would give

$$
p(\mu|y) = c p(\mu) l(\mu|y)
\quad \text{(77)}
$$

$$
= c \exp \left[ -\frac{1}{2 \sigma^2_\mu} (\mu - \mu_0)^2 \right] \exp \left[ -\frac{n}{2 \sigma^2_0} (\mu - \bar{y})^2 \right]
$$

$$
= c \exp \left\{ -\frac{1}{2} \left[ \frac{(\mu - \mu_0)^2}{\sigma^2_\mu} + \frac{n(\mu - \bar{y})^2}{\sigma^2_0} \right] \right\},
$$

and we want this to be of the form

$$
p(\mu|y) = c \exp \left\{ -\frac{1}{2} \left[ A(\mu - B)^2 + C \right] \right\}
\quad \text{(78)}
$$

$$
= c \exp \left\{ -\frac{1}{2} \left[ A\mu^2 - 2AB\mu + (AB^2 + C) \right] \right\}
$$

for some $B, C$, and $A > 0$.

Maple can help see if this works:
Gaussian Inference For $\mu$ (continued)

> collect( ( mu - mu0 )^2 / sigmamu^2 + 
  n * ( mu - ybar )^2 / sigma0^2, mu );

\[
\begin{align*}
\frac{1}{\sigma_\mu^2} + \frac{n}{\sigma_0^2} &\quad \text{and} \quad \frac{\mu_0}{\sigma_\mu^2} + \frac{n\bar{y}}{\sigma_0^2} \\
\frac{1}{\sigma_\mu^2} + \frac{n}{\sigma_0^2} &\quad \text{and} \quad \frac{1}{\sigma_\mu^2} + \frac{n}{\sigma_0^2}
\end{align*}
\]

Matching coefficients for $A$ and $B$ (we don’t really care about $C$) gives

\[
A = \frac{1}{\sigma_\mu^2} + \frac{n}{\sigma_0^2} \quad \text{and} \quad B = \frac{\mu_0}{\sigma_\mu^2} + \frac{n\bar{y}}{\sigma_0^2}. \tag{79}
\]

Since $A > 0$ this demonstrates two things: (1) the **conjugate prior** for $\mu$ in model (75) is **normal**, and (2) the **conjugate updating rule** (when $\sigma_0$ is assumed known) is

\[
\begin{align*}
\mu &\sim N(\mu_0, \sigma_\mu^2) \\
(Y_i|\mu) &\overset{\text{IID}}{\sim} N(\mu, \sigma_0^2), & i = 1, \ldots, n
\end{align*}
\rightarrow (\mu|y) = (\mu|\bar{y}) = N(\mu_*, \sigma_*^2), \tag{80}
\]
Precision

where the \textbf{posterior mean and variance} are given by

\[
\mu_* = B = \frac{\left( \frac{1}{\sigma^2_\mu} \right) \mu_0 + \left( \frac{n}{\sigma^2_0} \right) \bar{y}}{\frac{1}{\sigma^2_\mu} + \frac{n}{\sigma^2_0}} \quad \text{and} \quad \sigma_*^2 = A^{-1} = \frac{1}{\frac{1}{\sigma^2_\mu} + \frac{n}{\sigma^2_0}}. \quad (81)
\]

It becomes useful in understanding the meaning of these expressions to define the \textbf{precision} of a distribution, which is just the \textbf{reciprocal} of its variance: whereas the variance and SD scales measure \textbf{uncertainty}, the precision scale quantifies \textbf{information} about an unknown.

With this convention (81) has a series of \textbf{intuitive interpretations}, as follows:

- The \textbf{prior}, considered as an \textbf{information source}, is Gaussian with mean $\mu_0$, variance $\sigma^2_\mu$, and \textbf{precision} $\frac{1}{\sigma^2_\mu}$, and when viewed as a data set consists of $n_0$ (to be determined below) observations;

- The \textbf{likelihood}, considered as an \textbf{information source}, is Gaussian with mean $\bar{y}$, variance $\frac{\sigma^2_0}{n}$, and \textbf{precision} $\frac{n}{\sigma^2_0}$, and when viewed as a data set consists of $n$ observations;
Conjugate Updating: Gaussian Inference About $\mu$

- The **posterior**, considered as an **information source**, is Gaussian, and the posterior mean is a **weighted average** of the prior mean and data mean, with weights given by the **prior** and **data precisions**;

- The **posterior precision** (the reciprocal of the posterior variance) is just the **sum** of the prior and data precisions (this is why people invented the idea of precision — on this scale **information** about $\mu$ in model (75) is **additive**); and

  - **Rewriting** $\mu_*$ as

    $$
    \mu_* = \frac{\left(\frac{1}{\sigma_\mu^2}\right) \mu_0 + \left(\frac{n}{\sigma_0^2}\right) \bar{y}}{\frac{1}{\sigma_\mu^2} + \frac{n}{\sigma_0^2}} = \frac{\left(\frac{\sigma_0^2}{\sigma_\mu^2}\right) \mu_0 + n \bar{y}}{\frac{\sigma_0^2}{\sigma_\mu^2} + n},
    $$

    you can see that the **prior sample size** is

    $$
    n_0 = \frac{\sigma_0^2}{\sigma_\mu^2} = \frac{1}{\left(\frac{\sigma_\mu}{\sigma_0}\right)^2},
    $$

    which makes sense: the **bigger** $\sigma_\mu$ is in relation to $\sigma_0$, the **less prior information** is being incorporated in the conjugate updating (82).
**Bayesian Inference with Multivariate $\theta$**

**Bayesian inference with multivariate $\theta$.** Returning now to (73) with $\sigma^2$ unknown, (as mentioned above) this model has a ($k = 2$)-dimensional parameter vector $\theta = (\mu, \sigma^2)$.

When $k > 1$ you can still use Bayes’ Theorem directly to obtain the joint posterior distribution,

$$
    p(\theta|y) = p(\mu, \sigma^2|y) = c p(\theta) l(\theta|y)
    = c p(\mu, \sigma^2) l(\mu, \sigma^2|y),
$$

where $y = (y_1, \ldots, y_n)$, although making this calculation directly requires a $k$-dimensional integration to evaluate the normalizing constant $c$; for example, in this case

$$
    c = [p(y)]^{-1} = \left( \int \int p(\mu, \sigma^2, y) \, d\mu \, d\sigma^2 \right)^{-1}
    = \left( \int \int p(\mu, \sigma^2) l(\mu, \sigma^2|y) \, d\mu \, d\sigma^2 \right)^{-1}.
$$

Usually, however, you’ll be more interested in the marginal posterior distributions, in this case $p(\mu|y)$ and $p(\sigma^2|y)$. 

Marginalization

Obtaining these requires $k$ integrations, each of dimension $(k - 1)$, a process that people refer to as **marginalization** or **integrating out the nuisance parameters** — for example,

$$p(\mu|y) = \int_0^\infty p(\mu, \sigma^2|y) \, d\sigma^2.$$  \hfill (86)

**Predictive** distributions also involve a $k$-dimensional integration: for example, with $y = (y_1, \ldots, y_n)$,

$$p(y_{n+1}|y) = \int\int p(y_{n+1}, \mu, \sigma^2|y) \, d\mu \, d\sigma^2$$  \hfill (87)

$$= \int\int p(y_{n+1}|\mu, \sigma^2) \, p(\mu, \sigma^2|y) \, d\mu \, d\sigma^2.$$

And, finally, if you’re interested in a **function of the parameters**, you have some more hard integrations ahead of you.

For instance, suppose you wanted the posterior distribution for the **coefficient of variation** $\lambda = g_1(\mu, \sigma^2) = \frac{\sqrt{\sigma^2}}{\mu}$ in model (73).

Then one fairly direct way to get this posterior (e.g., Bernardo and Smith, 1994) is to (a) introduce a **second function** of the parameters, say
The Integration Challenge

\( \eta = g_2(\mu, \sigma^2) \), such that the mapping \( f = (g_1, g_2) \) from \((\mu, \sigma^2)\) to \((\lambda, \eta)\) is invertible; (b) compute the joint posterior for \((\lambda, \eta)\) through the usual change-of-variables formula

\[
p(\lambda, \eta|y) = p_{\mu, \sigma^2}[f^{-1}(\lambda, \eta)|y] \ |J_{f^{-1}}(\lambda, \eta)| ,
\]

where \( p_{\mu, \sigma^2}(\cdot, \cdot|y) \) is the joint posterior for \( \mu \) and \( \sigma^2 \) and \( |J_{f^{-1}}| \) is the determinant of the Jacobian of the inverse transformation; and (c) marginalize in \( \lambda \) by integrating out \( \eta \) in \( p(\lambda, \eta|y) \), in a manner analogous to (86).

Here, for instance, \( \eta = g_2(\mu, \sigma^2) = \mu \) would create an invertible \( f \), with inverse defined by \( (\mu = \eta, \sigma^2 = \lambda^2 \eta^2) \); the Jacobian determinant comes out \( 2\lambda \eta^2 \) and (94) becomes \( p(\lambda, \eta|y) = 2\lambda \eta^2 p_{\mu, \sigma^2}(\eta, \lambda^2 \eta^2|y) \).

This process involves two integrations, one (of dimension \( k \)) to get the normalizing constant that defines (88) and one (of dimension \( (k - 1) \)) to get rid of \( \eta \).

You can see that when \( k \) is a lot bigger than 2 all these integrals may create severe computational problems — this has been the big stumbling block for applied Bayesian work for a long time.
Gaussian Modeling With Unknown $\mu$ and $\sigma^2$

More than 200 years ago **Laplace** (1774) — the second applied Bayesian in history (after Bayes himself) — developed, as one avenue of solution to this problem, what people now call **Laplace approximations** to high-dimensional integrals of the type arising in Bayesian calculations (see, e.g., Tierney and Kadane, 1986).

Starting in the next case study after this one, we’ll use another, computationally intensive, **simulation-based** approach: **Markov chain Monte Carlo** (MCMC).

**Back to model (73).** The conjugate prior for $\theta = (\mu, \sigma^2)$ in this model (see GCSR) turns out to be most simply described **hierarchically**:

$$
\sigma^2 \sim \text{SI-}\chi^2(\nu_0, \sigma_0^2) \\
(\mu | \sigma^2) \sim N\left(\mu_0, \frac{\sigma^2}{\kappa_0}\right). \tag{89}
$$

Here saying that $\sigma^2 \sim \text{SI-}\chi^2(\nu_0, \sigma_0^2)$, where SI stands for **scaled inverse**, amounts to saying that the precision $\tau = \frac{1}{\sigma^2}$ follows a **scaled $\chi^2$** distribution with parameters $\nu_0$ and $\sigma_0^2$. 
Gaussian Modeling With Unknown $\mu$ and $\sigma^2$ (continued)

The scaling is chosen so that $\sigma_0^2$ can be interpreted as a prior estimate of $\sigma^2$, with $\nu_0$ the prior sample size of this estimate (i.e., think of a prior data set with $\nu_0$ observations and sample SD $\sigma_0$).

Since $\chi^2$ is a special case of the Gamma distribution, SI-$\chi^2$ must be a special case of the inverse Gamma family — its density (see GCSR, Appendix A) is

$$
\sigma^2 \sim \text{SI-}\chi^2(\nu_0, \sigma_0^2) \leftrightarrow
$$

$$
p(\sigma^2) = \frac{(1/2)^{\nu_0}}{\Gamma(1/2)} \frac{1}{\sigma_0^{1/2} \nu_0} \left(\sigma_0^2\right)^{\nu_0/2} \exp\left(-\frac{\nu_0 \sigma_0^2}{2\sigma^2}\right). 
$$

(90)

As may be verified with Maple, this distribution has mean (provided that $\nu_0 > 2$) and variance (provided that $\nu_0 > 4$) given by

$$
E(\sigma^2) = \frac{\nu_0}{\nu_0 - 2} \sigma_0^2 \quad \text{and} \quad V(\sigma^2) = \frac{2\nu_0^2}{(\nu_0 - 2)^2(\nu_0 - 4)} \sigma_0^4.
$$

(91)

The parameters $\mu_0$ and $\kappa_0$ in the second level of the prior model (89), $(\mu|\sigma^2) \sim N(\mu_0, \frac{\sigma^2}{\kappa_0})$, have simple parallel interpretations to those of $\sigma_0^2$ and $\nu_0$: $\mu_0$ is the prior estimate of $\mu$, and $\kappa_0$ is the prior effective sample size of this estimate.
The **likelihood function** in model (73), with both $\mu$ and $\sigma^2$ unknown, is

$$
l(\mu, \sigma^2 | y) = c \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left[ -\frac{1}{2\sigma^2} (y_i - \mu)^2 \right]$$

$$
= c \left( \sigma^2 \right)^{-\frac{1}{2}n} \exp \left[ -\frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - \mu)^2 \right] \quad (92)
$$

$$
= c \left( \sigma^2 \right)^{-\frac{1}{2}n} \exp \left[ -\frac{1}{2\sigma^2} \left( \sum_{i=1}^{n} y_i^2 - 2\mu \sum_{i=1}^{n} y_i + n\mu^2 \right) \right].
$$

The **expression in brackets** in the last line of (92) is

$$
[ \cdot ] = -\frac{1}{2\sigma^2} \left[ \sum_{i=1}^{n} y_i^2 + n(\mu - \bar{y})^2 - n\bar{y}^2 \right] \quad (93)
$$

$$
= -\frac{1}{2\sigma^2} \left[ n(\mu - \bar{y})^2 + (n - 1)s^2 \right],
$$

where $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y})^2$ is the **sample variance**. Thus

$$
l(\mu, \sigma^2 | y) = c \left( \sigma^2 \right)^{-\frac{1}{2}n} \exp \left\{ -\frac{1}{2\sigma^2} \left[ n(\mu - \bar{y})^2 + (n - 1)s^2 \right] \right\}, \quad (94)
$$
and it’s clear that the vector \((\bar{y}, s^2)\) is **sufficient** for \(\theta = (\mu, \sigma^2)\) in this model, i.e., \(l(\mu, \sigma^2|y) = l(\mu, \sigma^2|\bar{y}, s^2)\).

**Maple** can be used to make **3D** and **contour plots** of this likelihood function with the NB10 data:

\[
l := (mu, sigma2, ybar, s2, n) \rightarrow sigma2^(-n/2)*
\exp(- ( n*(mu-ybar)^2 + (n-1)*s2 ) / (2*sigma2));
\]

\[
l := (mu, sigma2, ybar, s2, n) \rightarrow
\frac{2}{(-1/2 \ n) \ n (mu - ybar) + (n - 1) s2}
\exp(- 1/2 -----------------------------)
\]

\[
sigma2
\]

\[
\frac{1}{sigma2}
\]

\[
> plot3d( l( mu, sigma2, 404.6, 42.25, 100 ), mu = 402.6 .. 406.6,
sigma2 = 25 .. 70 );
\]

The result (next page) looks something like a **bivariate normal** density except that it’s **skewed** along the \(\sigma^2\) dimension:
Bivariate Gaussian Likelihood (continued)
You can use the mouse to rotate 3D plots and get other useful views of them:

The projection or shadow plot of $\mu$ (left) looks a lot like a normal (or maybe a $t$) distribution, and the shadow plot of $\sigma^2$ (right) looks a lot like a Gamma (or maybe an inverse Gamma) distribution.
The contour plot shows that \( \mu \) and \( \sigma^2 \) are uncorrelated in the likelihood distribution, and the skewness of the marginal distribution of \( \sigma^2 \) is also evident.
Having adopted the conjugate prior (89), what I’d like next is simple expressions for the marginal posterior distributions \( p(\mu|y) \) and \( p(\sigma^2|y) \) and for predictive distributions like \( p(y_{n+1}|y) \).

Fortunately, in model (73) all of the integrations (such as (86) and (87)) may be done analytically (see, e.g., Bernardo and Smith 1994), yielding the following results:

\[
\begin{align*}
(\sigma^2|y, \mathcal{G}) & \sim \text{SI-\( \chi^2 \)}(\nu_n, \sigma^2_n), \\
(\mu|y, \mathcal{G}) & \sim t_{\nu_n} \left( \mu_n, \frac{\sigma^2_n}{\kappa_n} \right), \quad \text{and} \quad \quad (95) \\
(y_{n+1}|y, \mathcal{G}) & \sim t_{\nu_n} \left( \mu_n, \frac{\kappa_n + 1}{\kappa_n} \sigma^2_n \right).
\end{align*}
\]

In the above expressions

\[
\begin{align*}
\nu_n & = \nu_0 + n, \\
\sigma^2_n & = \frac{1}{\nu_n} \left[ \nu_0 \sigma^2_0 + (n - 1)s^2 + \frac{\kappa_0 n}{\kappa_0 + n} (\bar{y} - \mu_0)^2 \right],
\end{align*}
\]
Gaussian Inferential Analysis (continued)

\[ \mu_n = \frac{\kappa_0}{\kappa_0 + n} \mu_0 + \frac{n}{\kappa_0 + n} \bar{y}, \quad \text{and} \]
\[ \kappa_n = \kappa_0 + n, \]

\( \bar{y} \) and \( s^2 \) are the usual sample mean and variance of \( y \), and \( \mathcal{G} \) denotes the assumption of the Gaussian model.

Here \( t_{\nu}(\mu, \sigma^2) \) is a location-scale version of the usual \( t_\nu \) distribution, i.e.,
\[ W \sim t_{\nu}(\mu, \sigma^2) \iff \frac{W - \mu}{\sigma} \sim t_{\nu}. \]

This distribution (see GCSR, Appendix A) has density
\[ \eta \sim t_{\nu}(\mu, \sigma^2) \iff p(\eta) = \frac{\Gamma\left[\frac{1}{2}(\nu + 1)\right]}{\Gamma\left(\frac{1}{2}\nu\right) \sqrt{\nu \pi \sigma^2} } \left[ 1 + \frac{1}{\nu \sigma^2} (\eta - \mu)^2 \right]^{-\frac{\nu+1}{2}}. \]

It turns out that \( t_{\nu}(\mu, \sigma^2) \) has mean \( \mu \) (as long as \( \nu > 1 \)) and variance \( \frac{\nu}{\nu - 2} \sigma^2 \) (as long as \( \nu > 2 \)).

Notice that, as with all previous conjugate examples, the posterior mean is again a weighted average of the prior mean and data mean, with weights determined by the prior sample size and the data sample size:
\begin{align}
\mu_n &= \frac{\kappa_0}{\kappa_0 + n} \mu_0 + \frac{n}{\kappa_0 + n} \bar{y}.
\end{align}

**NB10 Gaussian Analysis.** Question (a): I don’t know anything about what NB10 is supposed to weigh (down to the nearest microgram) or about the accuracy of the NBS’s measurement process, so I want to use a **diffuse prior** for \(\mu\) and \(\sigma^2\).

Considering the meaning of the **hyperparameters**, to provide little prior information I want to choose both \(\nu_0\) and \(\kappa_0\) close to 0.

Making them exactly 0 would produce an **improper** prior distribution (which doesn’t integrate to 1), but choosing positive values as close to 0 as you like yields a **proper and highly diffuse prior**.

You can see from (95, 96) that the result is then

\begin{align}
(\mu | y, \mathcal{G}) &\sim t_n \left[ \bar{y}, \frac{(n - 1)s^2}{n^2} \right] \equiv N \left( \bar{y}, \frac{s^2}{n} \right),
\end{align}

i.e., with diffuse prior information (as with the Bernoulli model in the AMI case study) the 95\% central Bayesian interval **virtually coincides** with the usual
NB10 Gaussian Analysis (continued)

frequentist 95% confidence interval
\[ \bar{y} \pm t_{n-1}^{.975} \frac{s}{\sqrt{n}} = 404.6 \pm (1.98)(0.647) = (403.3, 405.9). \]

Thus both \{frequentists who assume \( \mathcal{G} \)\} and \{Bayesians who assume \( \mathcal{G} \) with a diffuse prior\} conclude that NB10 weighs about 404.6\( \mu g \) below 10g, give or take about 0.65\( \mu g \).

**Question (b).** If interest focuses on whether NB10 weighs less than some value like 405.25, when reasoning in a Bayesian way you can answer this question directly: the posterior distribution for \( \mu \) is shown below, and \( P_B(\mu < 405.25 | y, \mathcal{G}, \text{diffuse prior}) = .85 \), i.e., your betting odds in favor of the proposition that \( \mu < 405.25 \) are about 5.5 to 1 (see graph next page).

When reasoning in a frequentist way \( P_F(\mu < 405.25) \) is undefined; about the best you can do is to test \( H_0 : \mu < 405.25 \), for which the \( p \)-value would (approximately) be \( p = P_{F, \mu=405.25}(\bar{y} > 404.6) = .85 \), i.e., “insufficient evidence to reject \( H_0 \) at the usual significance levels” (note the connection between the \( p \)-value and the posterior probability, which arises in this example because the null hypothesis is one-sided).
NB The significance test tries to answer a different question: in Bayesian language it looks at \( P(\bar{y}|\mu) \) instead of \( P(\mu|\bar{y}) \).

Most people find the latter quantity more interpretable.

*Question (c).* We saw earlier that in this model

\[
(y_{n+1}|y, \mathcal{G}) \sim t_{\nu_n} \left[ \mu_n, \frac{\kappa_n + 1}{\kappa_n} \sigma_n^2 \right],
\]

(100)
and for $n$ large and $\nu_0$ and $\kappa_0$ close to 0 this is $(y_{n+1}|y, \mathcal{G}) \sim N(\bar{y}, s^2)$, i.e., a **95% posterior predictive interval** for $y_{n+1}$ is $(392, 418)$.

A **standardized version** of this predictive distribution is plotted below, with the standardized NB10 data values **superimposed**.
It’s evident from this plot (and also from the normal qqplot given earlier) that the Gaussian model provides a **poor fit** for these data — the three most extreme points in the data set in standard units are $-4.6, 2.8,$ and $5.0$.

With the **symmetric heavy tails** indicated in these plots, in fact, the empirical CDF looks quite a bit like that of a $t$ distribution with a rather small number of **degrees of freedom**.

This suggests revising the previous model by **expanding** it: embedding the Gaussian in the $t$ family and adding a parameter $\nu$ for **tail-weight**.

This is an example of an important Bayesian idea — **model expansion**: (a) finding out how the current model $M$ is inadequate and (b) embedding $M$ in a richer class of models $\mathcal{M}$ of which $M$ is a special case, where $\mathcal{M}$ is chosen to remedy the deficiencies of $M$ revealed in (a).

Unfortunately there’s no standard **closed-form conjugate** choice for the prior on $\nu$.

A more **flexible** approach to computing is evidently needed — this is where **Markov chain Monte Carlo** methods (our next main topic) come in.
2.10 The Exponential Family

In our examples of \textit{conjugate} analysis so far, we worked out the form of the \textit{conjugate prior} just by \textit{looking} at the likelihood function. This works in \textit{simple} problems, but it would be nice to have a \textit{general} way of figuring out what the conjugate prior has to be (if it exists) once the likelihood is specified.

It was noticed a long time ago that many of the \textit{standard sampling distributions} that you’re likely to want to use in constructing likelihood functions in parametric Bayesian modeling have the \textit{same general form}, which is referred to as the \textbf{exponential family}.

I bring this up here because there’s a \textbf{simple theorem} that specifies the \textit{conjugate prior} for likelihoods that belong to the \textit{exponential family}.

\textbf{Definition} (e.g., Bernardo and Smith, 1994): Given data $y_1$ (a sample of size 1) and a parameter vector $\theta = (\theta_1, \ldots, \theta_k)$, the (marginal) sampling distribution $p(y_1|\theta)$ belongs to the \textit{k-dimensional exponential family} if it can be expressed in the form

$$
p(y_1|\theta) = f_1(y_1) g_1(\theta) \exp \left[ \sum_{j=1}^{k} \phi_j(\theta) h_j(y_1) \right] \tag{101}
$$
Exponential Family (continued)

for $y_1 \in \mathcal{Y}$ and 0 otherwise; if $\mathcal{Y}$ doesn’t depend on $\theta$
the family is called regular.

The vector $[\phi_1(\theta), \ldots, \phi_k(\theta)]$ in (101) is called the natural parameterization
of the exponential family.

When any single observation (e.g., $y_1$) has a sampling distribution of the form
(101), the joint distribution $p(y|\theta)$ of a sample $y = (y_1, \ldots, y_n)$ of size $n$
that’s conditionally IID from (101) (which also defines, as usual, the likelihood
function $l(\theta|y)$) will be

$$p(y|\theta) = l(\theta|y) = c \prod_{i=1}^{n} p(y_i|\theta)$$

$$= c \left[ \prod_{i=1}^{n} f_1(y_i) \right] [g_1(\theta)]^n \exp \left[ \sum_{j=1}^{k} \phi_j(\theta) \sum_{i=1}^{n} h_j(y_i) \right].$$

This leads to another way to define the exponential family: in (101) take
$f(y) = \prod_{i=1}^{n} f_1(y_i)$ and $g(\theta) = [g_1(\theta)]^n$ to yield

Definition: Given data $y = (y_1, \ldots, y_n)$ (a conditionally IID sample of size $n$)
and a parameter vector $\theta = (\theta_1, \ldots, \theta_k)$, the (joint) sampling distribution $p(y|\theta)$ belongs to the $k$-dimensional exponential family if it can be expressed in the form

$$p(y|\theta) = f(y) \exp \left[ \sum_{j=1}^{k} \phi_j(\theta) \sum_{i=1}^{n} h_j(y_i) \right].$$

(102)

Either way you can see that $\{\sum_{i=1}^{n} h_1(y_i), \ldots, \sum_{i=1}^{n} h_k(y_i)\}$ is a set of sufficient statistics for $\theta$ under this sampling model, because the likelihood $l(\theta|y)$ depends on $y$ only through the values of $\{h_1, \ldots, h_k\}$.

Now here’s the theorem about the conjugate prior: if the likelihood $l(\theta|y)$ is of the form (102), then in searching for a conjugate prior $p(\theta)$ — that is, a prior of the same functional form as the likelihood — you can see directly what will work:

$$p(\theta) = c g(\theta)^{\tau_0} \exp \left[ \sum_{j=1}^{k} \phi_j(\theta) \tau_j \right],$$

(103)

for some $\tau = (\tau_0, \ldots, \tau_k)$. 
Exponential Family (continued)

With this choice the posterior for $\theta$ will be

$$p(\theta|y) = c f(y) g(\theta)^{1+\tau_0} \exp \left\{ \sum_{j=1}^{k} \phi_j(\theta) \left[ \tau_j + \sum_{i=1}^{n} h_j(y) \right] \right\}, \quad (104)$$

which is indeed of the same form (in $\theta$) as (102).

Example (1) With $s = \sum_{i=1}^{n} y_i$, recall that the Bernoulli/binomial likelihood can be written

$$l(\theta|y) = c \theta^s (1 - \theta)^{n-s}$$

$$= c (1 - \theta)^n \left( \frac{\theta}{1-\theta} \right)^s$$

$$= c (1 - \theta)^n \exp \left[ s \log \left( \frac{\theta}{1-\theta} \right) \right], \quad (105)$$

which shows (a) that this sampling distribution is a member of the exponential family with $k = 1$, $g(\theta) = (1 - \theta)^n$, $\phi_1(\theta) = \log \left( \frac{\theta}{1-\theta} \right)$ (NB the natural parameterization, and the basis of logistic regression), and $h_1(y_i) = y_i$, and (b) that $\sum_{i=1}^{n} h_1(y_i) = s$ is sufficient for $\theta$. 

Bayesian Statistics 2: Exchangeability and Conjugate Modeling 152
Exponential Family (continued)

Then (103) says that the **conjugate prior** for the Bernoulli/binomial likelihood is

\[
p(\theta) = c (1 - \theta)^{n\tau_0} \exp \left[ \tau_1 \log \left( \frac{\theta}{1 - \theta} \right) \right]
\]

\[
= c \theta^{\alpha - 1} (1 - \theta)^{\beta - 1} = \text{Beta}(\alpha, \beta)
\]

(106)

for some \( \alpha \) and \( \beta \), as we’ve already seen is true.

**Example (2)** For a setting with \( k > 1 \), take \( \theta = (\mu, \sigma^2) \) with the Gaussian likelihood:

\[
l(\theta | y) = \prod_{i=1}^{n} \frac{1}{\sigma \sqrt{2\pi}} \exp \left[ -\frac{1}{2\sigma^2} (y_i - \mu)^2 \right]
\]

\[
= c (\sigma^2)^{-\frac{n}{2}} \exp \left[ -\frac{1}{2\sigma^2} \left( \sum_{i=1}^{n} y_i^2 - 2\mu \sum_{i=1}^{n} y_i + n\mu^2 \right) \right].
\]

This is of the form (102) with \( k = 2 \), \( f(y) = 1 \), \( g(\theta) = (\sigma^2)^{-\frac{n}{2}} \exp \left( -\frac{n\mu^2}{2\sigma^2} \right) \), \( \phi_1(\theta) = -\frac{1}{2\sigma^2} \), \( \phi_2(\theta) = \frac{\mu}{\sigma^2} \), \( h_1(y_i) = y_i^2 \), and \( h_2(y_i) = y_i \), which shows that \( [h_1(y) = \sum_{i=1}^{n} y_i^2, h_2(y) = \sum_{i=1}^{n} y_i] \) or equivalently \((\bar{y}, s^2)\) is
Exponential Family (continued)

sufficient for $\theta$.

Some unpleasant algebra then demonstrates that an application of the conjugate prior theorem (54) in the exponential family leads to (95) as the conjugate prior for the Gaussian likelihood when both $\mu$ and $\sigma^2$ are unknown.

**Example (3)** An example of a non-regular exponential family: suppose (as in the case study in homework 3 problem 2) that a reasonable model for the data is to take the observed values $(y_i|\theta)$ to be conditionally IID from the uniform distribution $U(0, \theta)$ on the interval $(0, \theta)$ for unknown $\theta$:

$$p(y_1|\theta) = \begin{cases} \frac{1}{\theta} & \text{for } 0 < y_1 < \theta \\ 0 & \text{otherwise} \end{cases} = \frac{1}{\theta} I(0, \theta),$$

(108)

where $I(A) = 1$ if $A$ is true and 0 otherwise.

$\theta$ in this model is called a range-restriction parameter; such parameters are fundamentally different from location and scale parameters (like the mean $\mu$ and variance $\sigma^2$ in the $N(\mu, \sigma^2)$ model, respectively) or shape parameters (like the degrees of freedom $\nu$ in the $t_\nu$ model).
Pros and Cons of Maximum Likelihood

(108) is an example of (102) with $c = 1$, $f_1(y) = 1$, $g_1(\theta) = \frac{1}{\theta}$, $h_1(y) = 0$, and $\phi_1(\theta) = \text{anything you want (e.g., 1), but only when}$ the set $Y = (0, \theta)$ is taken to depend on $\theta$.

Truncated distributions with unknown truncation point(s) also lead to non-regular exponential families; an example would be if you needed to model your data as like random draws from a (rescaled) $N(\mu, \sigma^2)$ distribution forced to live not on $(-\infty, \infty)$ but on $(A, B)$ with at least one of $A$ and $B$ unknown.

As you’ll see in homework 3, inference in non-regular exponential families is similar in some respects to the story when the exponential family is regular, but there are some important differences too.

2.11 Pros and cons of maximum likelihood.

Strength of maximum likelihood as an approach to parametric inference:

- Fisher’s approach extends readily to situations in which the parameter $\theta$ is a vector of length $k > 1$:
  - The log likelihood $\ell(\theta|y)$ is now a function of the $k$ values $(\theta_1, \ldots, \theta_k)$ for fixed data vector $y$; in regular problems (in which the maximum occurs in the
Pros and Cons of Maximum Likelihood (continued)

interior of the parameter space) the MLE can be found by

(a) creating a system of $k$ equations in $k$ unknowns, by setting the (first)
    partial derivatives $\frac{\partial}{\partial \theta_j} ll(\theta|y)$ equal to 0, and

(b) solving this system, either analytically or numerically.

Example: With a conditionally IID Gaussian sampling distribution
for $y_i$ in which the data-generating mean $\mu$ and variance $\sigma^2$ are both
unknown, from equation (94) above the likelihood is

$$l(\mu, \sigma^2|y) = c \left(\sigma^2\right)^{-\frac{1}{2}n} \exp\left\{ -\frac{1}{2\sigma^2} \left[n(\mu - \bar{y})^2 + (n - 1)s^2\right]\right\}, \quad (109)$$

and the log likelihood is then evidently

$$ll(\mu, \sigma^2|y) = c - n \log \sigma - \frac{1}{2\sigma^2} \left[n(\mu - \bar{y})^2 + (n - 1)s^2\right]. \quad (110)$$

Q: If I find the MLE of $\gamma = \sigma^2$ in this model and you find the MLE of
$\eta = \sigma$, how should these two estimates be related?

It would be nice if $\hat{\gamma}_{\text{MLE}} = (\hat{\eta}_{\text{MLE}})^2$; is this true?
To write the log likelihood in the $\gamma$ parameterization, I just put $\gamma$ wherever I see $\sigma^2$:

$$ll(\mu, \gamma|y) = c - \frac{n}{2} \log \gamma - \frac{1}{2\gamma} \left[ n(\mu - \bar{y})^2 + (n - 1)s^2 \right];$$  \hspace{1cm} (111)

similarly, to write the log likelihood in the $\eta$ parameterization, I just put $\eta$ wherever I see $\sigma$:

$$ll(\mu, \eta|y) = c - n \log \eta - \frac{1}{2\eta^2} \left[ n(\mu - \bar{y})^2 + (n - 1)s^2 \right].$$  \hspace{1cm} (112)

The system of $k = 2$ equations in $\mu$ and $\gamma$ is then

$$\begin{cases} 
\frac{\partial}{\partial \mu} ll(\mu, \gamma|y) = -\frac{1}{\gamma} n (\mu - \bar{y}) = 0 \\
\frac{\partial}{\partial \gamma} ll(\mu, \gamma|y) = -\frac{n}{2\gamma} + \frac{1}{2\gamma^2} \left[ n(\mu - \bar{y})^2 + (n - 1)s^2 \right] = 0
\end{cases},$$  \hspace{1cm} (113)

and this has the solution

$$\begin{Bmatrix} 
\mu = \hat{\mu}_{\text{MLE}} = \bar{y}, \\
\gamma = \hat{\gamma}_{\text{MLE}} = \hat{\sigma}^2_{\text{MLE}} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2
\end{Bmatrix}.$$  \hspace{1cm} (114)
Similarly, the system of \( k = 2 \) equations in \( \mu \) and \( \eta \) is then
\[
\begin{align*}
\frac{\partial}{\partial \mu} ll(\mu, \eta|y) &= -\frac{1}{\eta} n (\mu - \bar{y}) = 0 \\
\frac{\partial}{\partial \eta} ll(\mu, \eta|y) &= -\frac{n}{\eta} + \frac{1}{n} \left[ n(\mu - \bar{y})^2 + (n-1)s^2 \right] = 0
\end{align*}
\] (115)

and this has the solution
\[
\begin{align*}
\mu &= \hat{\mu}_{\text{MLE}} = \bar{y}, \quad \eta &= \hat{\eta}_{\text{MLE}} = \hat{\sigma}_{\text{MLE}} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2}
\end{align*}
\] (116)

So the answer to the question above is nice: you get the same estimate of \( \mu \) either way, and \( \hat{\sigma}_{\text{MLE}}^2 = (\hat{\sigma}_{\text{MLE}})^2 \).

This is an example of a general property, of both the MLE and the posterior mode, called functional invariance: the simplest special case of this property to state says that if \( g(\cdot) \) is invertible then \( g(\hat{\theta})_{\text{MLE}} = g \left( \hat{\theta}_{\text{MLE}} \right) \) (there’s a more general version of functional invariance of the MLE for all functions \( g \) (not just the invertible ones), but it requires the idea of profile likelihood, which is not important for Bayesian work).
— The one-dimensional large-sample result we looked at earlier,
\[
\hat{\theta}_{\text{MLE}} \sim N \left[ \theta, \hat{I}^{-1} \left( \hat{\theta}_{\text{MLE}} \right) \right],
\] (117)

generalizes with \( k \geq 1 \) to
\[
\hat{\theta}_{\text{MLE}} \sim N_k \left[ \theta, \hat{I}^{-1} \left( \hat{\theta}_{\text{MLE}} \right) \right],
\] (118)
in which \( N_k(\mu, \Sigma) \) is the multivariate normal distribution, in \( k \) dimensions, with mean vector \( \mu \) and covariance matrix \( \Sigma \); here the analogue of \( \hat{I} \) in the one-dimensional result is a \textbf{matrix} (minus the \textbf{Hessian} [matrix of second partial derivatives] of the \textbf{log likelihood}, evaluated at the MLE) and what used to be the reciprocal operation in \( \hat{I}^{-1} \) when \( k = 1 \) is now matrix inversion.

\textbf{Example} (continued): Carrying on with the \textbf{parameterization} \( \gamma = \sigma^2 \), the \textbf{second partial derivatives} are
\[
\frac{\partial^2}{\partial \mu^2} ll(\mu, \gamma | y) = -\frac{n}{\gamma}, \quad \frac{\partial^2}{\partial \mu \partial \gamma} ll(\mu, \gamma | y) = \frac{n}{\gamma^2} (\mu - \bar{y}) \quad \text{and}
\]
\[
\frac{\partial^2}{\partial \gamma^2} ll(\mu, \gamma | y) = \frac{n}{2 \gamma^2} - \frac{1}{\gamma^3} \left[ n(\mu - \bar{y})^2 + (n - 1)s^2 \right],
\] (119)
so the **information matrix** is

\[
\hat{I} = -\begin{bmatrix}
\frac{\partial^2}{\partial \mu^2} ll(\mu, \gamma|y) & \frac{\partial^2}{\partial \mu \partial \gamma} ll(\mu, \gamma|y) \\
\frac{\partial^2}{\partial \mu \partial \gamma} ll(\mu, \gamma|y) & \frac{\partial^2}{\partial \gamma^2} ll(\mu, \gamma|y)
\end{bmatrix}_{\mu=\hat{\mu}, \gamma=\hat{\gamma}}
\]

\[
= \begin{bmatrix}
\frac{n}{\hat{\gamma}} & 0 \\
0 & \frac{n}{2\hat{\gamma}^2}
\end{bmatrix}
\]  

(120)

and the **large-sample estimated covariance matrix** of the MLE vector \(\hat{\theta} = (\hat{\mu}, \hat{\gamma})\) (in repeated sampling) is then

\[
\hat{V}(\hat{\theta}) = \hat{I}^{-1} = \begin{bmatrix}
\frac{\hat{\gamma}}{n} & 0 \\
0 & \frac{2\hat{\gamma}^2}{n}
\end{bmatrix}.
\]

(121)

What this **means** is that

(a) the **repeated-sampling variance** of \(\hat{\mu} = \bar{y}\) is **estimated** to be

\[
\hat{V}(\hat{\mu}) = \hat{V}(\bar{y}) = \frac{\hat{\gamma}^2}{n} = \frac{(n-1)s^2}{n^2} \quad \text{(where } s^2 = \frac{1}{n-1} \sum_{i=1}^{n}(y_i - \bar{y})^2 \text{ is the usual repeated-sampling-unbiased sample variance)}
\]

— note that in fact \(V(\bar{y}) = \frac{s^2}{n}\)
Pros and Cons of Maximum Likelihood (continued)

and $E \left[ \frac{(n-1)s^2}{n^2} \right] = \frac{\sigma^2}{n} - \frac{\sigma^2}{n^2}$, so that the bias in Fisher’s answer is quite small ($O \left( \frac{1}{n^2} \right)$); Fisher’s theory does not lead to good interval estimates for $\mu$ in small samples [it pretends that the distribution of $\frac{\bar{y} - \mu}{\sigma}$ is Gaussian when it’s actually scaled $t$], but the $t$ approaches the Gaussian as $n$ increases);

(b) the repeated-sampling covariance $\hat{C} (\hat{\mu}, \hat{\gamma})$ between $\hat{\mu}$ and $\hat{s}^2$ is estimated to be 0 — this is also approximately correct (it turns out that $\bar{y}$ and $s^2$ are independent, and therefore uncorrelated, in the Gaussian sampling model); and

(c) the repeated-sampling variance of $\hat{\gamma} = \hat{s}^2$ is estimated to be $\hat{V}(\hat{\gamma}) = \frac{2\hat{\gamma}^2}{n} = \frac{2\hat{\sigma}^4}{n}$ — this is also approximately correct (in repeated sampling in this model $\hat{\sigma}^2 \sim \frac{\sigma^2 \chi^2_{n-1}}{n}$, so that $V(\hat{\sigma}^2) = \frac{2(n-1)\sigma^4}{n^2} \approx \frac{2\sigma^4}{n}$; Fisher’s theory again does not lead to good interval estimates for $\sigma^2$ in small samples [it pretends that the distribution of $\hat{\sigma}^2$ is Gaussian when it’s actually scaled $\chi^2$], but again the $\chi^2$ approaches the Gaussian as $n$ increases).

The bottom line is that maximum likelihood is a successful general approach to parametric inference when the sample size $n$ is large and
little or no relevant information, about the unknown $\theta$, external to the data set $y$ is available (in this case maximum likelihood and Bayesian inferential conclusions will tend to be similar).

Disadvantages of maximum likelihood in relation to Bayesian inference (this will become clear as we go along):

• With small samples sizes, when the likelihood function $l(\theta|y)$ is skewed (e.g., often in hierarchical models [more on this later]), maximization over $\theta$ is not the best technology for learning about $\theta$; the Bayesian approach, which treats the likelihood as if it were a density, substitutes integration for maximization over $\theta$, and this has been found to have better repeated-sampling properties (with diffuse priors) when $n$ is small.

• The frequentist approach encourages thinking of each data set in isolation; the Bayesian approach explicitly provides a mechanism for combining information from multiple sources.

• Prediction of observables — an activity of central importance in science/statistics for its role in model-checking — is much easier from the Bayesian point of view.
2.12 References


References (continued)

Philosophical Transactions of the Royal Society of London A, 222, 309–368.


