solutions to THI handed out next class, so ABSOLUTE last minute to turn it in is 104 on the 6 Mar

THI handed out Thu 6 Mar, due Fri of finals week

we need a makeup class (possibly two): survey

our data set

\[
\begin{pmatrix}
 y_1 \\
 y_2 \\
 \vdots \\
 y_n
\end{pmatrix}
\]

unknown parameter vector \(\theta \), we want to learn about this from \(y \)

\[
y = (y_1, \ldots, y_n)
\]

ex.

NB 10

\[
(\text{mor|10}) \sim p(\cdot|10) \; \text{iid} \quad \tau \sim t(\mu, \sigma^2)
\]

\(j = 1, \ldots, n \)

scaled \(t \)-dist

\[
\text{sample weight of NB10}
\]

\[
\begin{pmatrix}
 y_1 \\
 \vdots \\
 y_{100}
\end{pmatrix}
\]

\(L = 100 \)

\(\mu, \sigma^2 \)

\(\theta = (\mu, \sigma^2) \)
Compute \(p(\theta | y, B) = c \cdot p(\theta | B) \).

is,

\[p(\mu_{\text{or} | y, B}) = \alpha p(\mu_{\text{or} | B}) \cdot c \cdot p(\theta | B). \]

Difficulties:
1. No conjugate prior exists here.
 \[p(\mu_{\text{or} | y, B}) \]
2. It is a 3-dimensional prob. dist. difficult to visualize & work with.

Solution: Learn about (random-sampling) Monte Carlo methods.
identically distributed manner

\[\frac{m}{n} \] if 181, 182, \ldots, 18n+1

\[\frac{m}{n} \] each

\[\frac{m}{n} \] in an \[\frac{m}{n} \]
m.c data set

\[\mu \rightarrow \nu \rightarrow \gamma_{n+1} \rightarrow \ldots \]

\[\text{hist}(\mu_{\text{star}}) \]

\[p(\mu | y, B) = \int \pi_p(\mu_{\text{prior}} | y, B) \, \text{d} \mu_{\text{prior}} \]

\[E(\mu | y, B) = \text{sample mean of } \mu_{\text{star}} \]
\[G(\theta^2) \approx p(\theta | \gamma) \]

- density mix of \(G \), \(g \)

- easy to sample from \(G \)

- \(\theta^* \)

- \(p(\theta | \gamma) \)

- target

- Beta density

- concave
IID (white noise) no time dependence

\[\theta_k, \theta_{k+1}, \theta_{k+2}, \ldots \]

\[\theta_k, \theta_{k+1} \]

\[\theta_k = 0.5 \]

\[\theta_{k+1} = 0.2 \]

\[\theta_{k+2} = 0.1 \]

\[\theta_{k+3} = 0.31 \]

\[I(\theta_k, \theta_{k+1}) \]

\[(\theta_k, \theta_{k+1}) \]

\[(I_1, I_2) \]

\[\text{log density} \]

by density

by conference

\[\text{log likelihood} \]